37 research outputs found

    Intraclonal mating occurs during tsetse transmission of Trypanosoma brucei

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Mating in <it>Trypanosoma brucei </it>is a non-obligatory event, triggered by the co-occurrence of different strains in the salivary glands of the vector. Recombinants that result from intra- rather than interclonal mating have been detected, but only in crosses of two different trypanosome strains. This has led to the hypothesis that when trypanosomes recognize a different strain, they release a diffusible factor or pheromone that triggers mating in any cell in the vicinity whether it is of the same or a different strain. This idea assumes that the trypanosome can recognize self and non-self, although there is as yet no evidence for the existence of mating types in <it>T. brucei</it>.</p> <p>Results</p> <p>We investigated intraclonal mating in <it>T. b. brucei </it>by crossing red and green fluorescent lines of a single strain, so that recombinant progeny can be detected in the fly by yellow fluorescence. For strain 1738, seven flies had both red and green trypanosomes in the salivary glands and, in three, yellow trypanosomes were also observed, although they could not be recovered for subsequent analysis. Nonetheless, both red and non-fluorescent clones from these flies had recombinant genotypes as judged by microsatellite and karyotype analyses, and some also had raised DNA contents, suggesting recombination or genome duplication. Strain J10 produced similar results indicative of intraclonal mating. In contrast, trypanosome clones recovered from other flies showed that genotypes can be transmitted with fidelity. When a yellow hybrid clone expressing both red and green fluorescent protein genes was transmitted, the salivary glands contained a mixture of fluorescent-coloured trypanosomes, but only yellow and red clones were recovered. While loss of the <it>GFP </it>gene in the red clones could have resulted from gene conversion, some of these clones showed loss of heterozygosity and raised DNA contents as in the other single strain transmissions. Our observations suggest that many recombinants are non-viable after intraclonal mating.</p> <p>Conclusion</p> <p>We have demonstrated intraclonal mating during fly transmission of <it>T. b. brucei</it>, contrary to previous findings that recombination occurs only when another strain is present. It is thus no longer possible to assume that <it>T. b. brucei </it>remains genetically unaltered after fly transmission.</p

    The use of yellow fluorescent hybrids to indicate mating in Trypanosoma brucei

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>Trypanosoma brucei </it>undergoes genetic exchange in its insect vector, the tsetse fly, by an unknown mechanism. The difficulties of working with this experimental system of genetic exchange have hampered investigation, particularly because the trypanosome life cycle stages involved cannot be cultured in vitro and therefore must be examined in the insect. Searching for small numbers of hybrid trypanosomes directly in the fly has become possible through the incorporation of fluorescent reporter genes, and we have previously carried out a successful cross using a reporter-repressor strategy. However, we could not be certain that all fluorescent trypanosomes observed in that cross were hybrids, due to mutations of the repressor leading to spontaneous fluorescence, and we have therefore developed an alternative strategy.</p> <p>Results</p> <p>To visualize the production of hybrids in the fly, parental trypanosome clones were transfected with a gene encoding Green Fluorescent Protein (GFP) or Red Fluorescent Protein (RFP). Co-infection of flies with red and green fluorescent parental trypanosomes produced yellow fluorescent hybrids, which were easily visualized in the fly salivary glands. Yellow trypanosomes were not seen in midgut or proventricular samples and first appeared in the glands as epimastigotes as early as 13 days after fly infection. Cloned progeny originating from individual salivary glands had yellow, red, green or no fluorescence and were confirmed as hybrids by microsatellite, molecular karyotype and kinetoplast (mitochondrial) DNA analyses. Hybrid clones showed biparental inheritance of both nuclear and kinetoplast genomes. While segregation and reassortment of the reporter genes and microsatellite alleles were consistent with Mendelian inheritance, flow cytometry measurement of DNA content revealed both diploid and polyploid trypanosomes among the hybrid progeny clones.</p> <p>Conclusion</p> <p>The strategy of using production of yellow hybrids to indicate mating in trypanosomes provides a robust and unequivocal system for analysis of genetic exchange. Mating occurred with high frequency in these experimental crosses, limited only by the ability of both parental trypanosomes to invade the salivary glands. Yellow hybrids appeared as soon as trypanosomes invaded the salivary glands, implicating the short, unattached epimastigote as the sexual stage. The recovery of diploid, triploid and tetraploid hybrids in these crosses was surprising as genetic markers appeared to have been inherited according to Mendelian rules. As the polyploid hybrids could have been produced from fusion of unreduced gametes, there is no fundamental conflict with a model of genetic exchange involving meiosis.</p

    The Influence of Sex and Fly Species on the Development of Trypanosomes in Tsetse Flies

    Get PDF
    Unlike other dipteran disease vectors, tsetse flies of both sexes feed on blood and transmit pathogenic African trypanosomes. During transmission, Trypanosoma brucei undergoes a complex cycle of proliferation and development inside the tsetse vector, culminating in production of infective forms in the saliva. The insect manifests robust immune defences throughout the alimentary tract, which eliminate many trypanosome infections. Previous work has shown that fly sex influences susceptibility to trypanosome infection as males show higher rates of salivary gland (SG) infection with T. brucei than females. To investigate sex-linked differences in the progression of infection, we compared midgut (MG), proventriculus, foregut and SG infections in male and female Glossina morsitans morsitans. Initially, infections developed in the same way in both sexes: no difference was observed in numbers of MG or proventriculus infections, or in the number and type of developmental forms produced. Female flies tended to produce foregut migratory forms later than males, but this had no detectable impact on the number of SG infections. The sex difference was not apparent until the final stage of SG invasion and colonisation, showing that the SG environment differs between male and female flies. Comparison of G. m. morsitans with G. pallidipes showed a similar, though less pronounced, sex difference in susceptibility, but additionally revealed very different levels of trypanosome resistance in the MG and SG. While G. pallidipes was more refractory to MG infection, a very high proportion of MG infections led to SG infection in both sexes. It appears that the two fly species use different strategies to block trypanosome infection: G. pallidipes heavily defends against initial establishment in the MG, while G. m. morsitans has additional measures to prevent trypanosomes colonising the SG, particularly in female flies. We conclude that the tsetse-trypanosome interface works differently in G. m. morsitans and G. pallidipes

    Two genotypic groups of morphologically similar fish trypanosomes from the Okavango Delta, Botswana

    Get PDF
    Blood smears and blood lysate samples from freshwater fishes captured in the Okavango Delta, Botswana, were examined to determine whether their trypanosomes were all Trypanosoma mukasai, a species of supposed broad host specificity and widespread existence across Africa. Trypanosomes and/or babesiosomes occurred in 20/32 blood smears, and morphometric analysis of trypanosomes from 13/32 smears showed features suggestive of T. mukasai, including nuclear indices consistently >1. In 16/32 blood lysate samples from which DNA was extracted, trypanosome DNA was detected in 12/16 by PCR (polymerase chain reaction), using trypanosome-specific ssu rRNA gene primers. Two samples positive for trypanosomes in blood smears yielded no amplifiable trypanosome DNA, but 4 samples with no detectable infection in blood smears were positive for trypanosome DNA, suggesting an overall trypanosome prevalence rate of 17/32 (53%) among fishes and demonstrating the value of PCR in trypanosome recognition. Cloning and sequencing of the 12 amplified fragments revealed 2 genotypic groups among these fish trypanosomes. Group 1 trypanosomes were from cichlids and 3 families of catfishes, Group 2 from 2 types of catfishes. Sequence comparison showed that the consensus Group 1 sequence was most similar to that of Trypanosoma cobitis, representing European fish trypanosomes of the carassii type, while the consensus Group 2 sequence showed similarity with a trypanosome sequence from another African catfish, Clarias angolensis. It was concluded that the identification of T. mukasai remains a problem, but at least 2 genotypic groups of trypanosomes occur in Okavango Delta fishes, and catfishes in this region appear to contain both types

    Mating compatibility in the parasitic protist <i>Trypanosoma brucei</i>.

    Get PDF
    BACKGROUND: Genetic exchange has been described in several kinetoplastid parasites, but the most well-studied mating system is that of Trypanosoma brucei, the causative organism of African sleeping sickness. Sexual reproduction takes place in the salivary glands (SG) of the tsetse vector and involves meiosis and production of haploid gametes. Few genetic crosses have been carried out to date and consequently there is little information about the mating compatibility of different trypanosomes. In other single-celled eukaryotes, mating compatibility is typically determined by a system of two or more mating types (MT). Here we investigated the MT system in T. brucei. METHODS: We analysed a large series of F1, F2 and back crosses by pairwise co-transmission of red and green fluorescent cloned cell lines through experimental tsetse flies. To analyse each cross, trypanosomes were cloned from fly SG containing a mixture of both parents, and genotyped by microsatellites and molecular karyotype. To investigate mating compatibility at the level of individual cells, we directly observed the behaviour of SG-derived gametes in intra- or interclonal mixtures of red and green fluorescent trypanosomes ex vivo. RESULTS: Hybrid progeny were found in all F1 and F2 crosses and most of the back crosses. The success of individual crosses was highly variable as judged by the number of hybrid clones produced, suggesting a range of mating compatibilities among F1 progeny. As well as hybrids, large numbers of recombinant genotypes resulting from intraclonal mating (selfers) were found in some crosses. In ex vivo mixtures, red and green fluorescent trypanosome gametes were observed to pair up and interact via their flagella in both inter- and intraclonal combinations. While yellow hybrid trypanosomes were frequently observed in interclonal mixtures, such evidence of cytoplasmic exchange was rare in the intraclonal mixtures. CONCLUSIONS: The outcomes of individual crosses, particularly back crosses, were variable in numbers of both hybrid and selfer clones produced, and do not readily fit a simple two MT model. From comparison of the behaviour of trypanosome gametes in inter- and intraclonal mixtures, we infer that mating compatibility is controlled at the level of gamete fusion
    corecore