2 research outputs found

    Finite element simulation of cold pilgering of ODS tubes

    Get PDF
    International audienceThe oxide dispersion strengthened (ODS) ferritic and martensitic steels are candidate cladding materials for the new fast-neutron sodium-cooled Generation IV reactors. Typically the cladding is cold formed by a sequence of cold pilger rolling passes with intermediate heat treatments. Cracking risk prediction in pilgering is linked to the choice of an appropriate constitutive model for modeling the process. Consequently, this work aims to assess the impact of the constitutive laws on cracking risk development in pilgering conditions

    Numerical Modeling of Tube Forming by HPTR Cold Pilgering Process

    No full text
    International audienceFor new fast-neutron sodium-cooled Generation IV nuclear reactors, the candidate cladding materials for the very strong burn-up are ferritic and martensitic oxide dispersion strengthened grades. Classically, the cladding tube is cold formed by a sequence of cold pilger milling passes with intermediate heat treatments. This process acts upon the geometry and the microstructure of the tubes. Consequently, crystallographic texture, grain sizes and morphologies, and tube integrity are highly dependent on the pilgering parameters. In order to optimize the resulting mechanical properties of cold-rolled cladding tubes, it is essential to have a thorough understanding of the pilgering process. Finite Element Method (FEM) models are used for the numerical predictions of this task; however, the accuracy of the numerical predictions depends not only on the type of constitutive laws but also on the quality of the material parameters identification. Therefore, a Chaboche-type law which parameters have been identified on experimental observation of the mechanical behavior of the material is used here. As a complete three-dimensional FEM mechanical analysis of the high-precision tube rolling (HPTR) cold pilgering of tubes could be very expensive, only the evolution of geometry and deformation is addressed in this work. The computed geometry is compared to the experimental one. It is shown that the evolution of the geometry and deformation is not homogeneous over the circumference. Moreover, it is exposed that the strain is nonhomogeneous in the radial, tangential, and axial directions. Finally, it is seen that the dominant deformation mode of a material point evolves during HPTR cold pilgering forming
    corecore