1,336 research outputs found

    Organic geochemistry of Palaeozoic source rocks, central North Sea (CNS)

    Get PDF
    This report details a regional analysis of the source rock quality and potential of Palaeozoic rocks of the UK Central North Sea for the 21CXRM Palaeozoic project. The objective was to undertake a regional screening of all intervals to identify source rocks using new and legacy datasets of all Carboniferous and Devonian samples. In addition, a literature review (Appendix 1) summarises source and kerogen typing information from legacy reports. The background and stratigraphic nomenclature are given in Monaghan et al. (2016), details on individual well interpretations and stratigraphy are given in Kearsey et al. (2015). Geological context on the results of this work are included in basin modelling (Vincent, 2015) and were synthesised into a petroleum systems analysis in Monaghan et al. (2015). New and legacy Carboniferous and Devonian source rock geochemical data were examined per well using industry standard criteria to give an overview of the source rock quality, type (oil or gas prone) and maturity. The aims of this study were to classify the source rock quality of 33 wells, to examine if intervals were ‘gas-prone’ or ‘oil-prone’, and to ascertain the hydrocarbon generation stage of each well based on Rock-Eval pyrolysis, vitrinite reflectance (VR, where available) and total organic carbon (TOC) data. The term ‘gas prone’ was used to describe source rocks that have or could generate gas; ‘oil prone’ for source intervals that have or could generate oil. This study was a rapid screening exercise to identify intervals or areas of interest, and as such the data and inferences must be used concomitantly with other geological data to fully assess the source rock potential within the studied wells. It should be noted that the wells studied penetrate different parts of the geological succession and in many cases only small sections of the Devonian and Carboniferous interval. An initial sift through the wells with available geochemical data indicated that 33 wells had enough data to be usefully evaluated. Subsequently it was found that 8 of the 33 wells had incomplete, unreliable or otherwise poor source rock quality data sets and therefore were not analysed further; the reasons are detailed in this report. The remaining 25 wells selected for analysis were: 43/28-2, 26/07-1, 26/08-1, 36/13-1, 36/23-1, 38/16-1, 38/18-1, 39/07-1, 41/08-1, 42/10a-1, 42/10b-2ST, 42/09-1, 41/10-1, 42/10b-2, 41/15-1, 43/21-2, 41/01-1, 41/20-1, 41/14-1, 43/02-1, 43/17-2, 43/20b-2, 43/28-1, 43/28-2, 44/13-1, 44/16-1. Samples analysed from the majority of these wells were interpreted to be gas prone in the Carboniferous succession (Figure 1). 1. 41/10-1, 41/14-1 and 41/20-1 contained source rocks that were both gas window mature (e.g. VR >1.3) and can be regarded as excellent gas source. Strata in 43/17-2, 44/16-1 and 43/28-1 were also gas mature in all or parts of the section of interest, but with variable source rock quality. The six wells all had low S2 peaks: this may be due to either prior hydrocarbon generation and depletion or the initial presence of low amounts of non-inert kerogen. 2. 41/15-1, 42/10b-2 and 43/21-2 were also identified as possessing good gas-prone source rocks with elevated S2 values and also a high maturity attained by the source rocks. 41/01-1 was identified as a good for gas generation in the deeper section. 3. 26/07-1, 26/08-1, 36/13-1, 38/16-1, 39/07-1, 41/08-1, 42/10a-1, 42/10b-2ST, 42/09-1, 43/02-1, 43/20b-2, 43/28-2 and 44/13-1, contain good to excellent quality source rocks, but have not matured sufficiently to generate significant amount of gas, so these can be regarded as poor gas sources based on their current maturity. If present, in deeper basins some of these intervals will have generated significant quantities of gas

    Asymptotic channels and gauge transformations of the time-dependent Dirac equation for extremely relativistic heavy-ion collisions

    Get PDF
    We discuss the two-center, time-dependent Dirac equation describing the dynamics of an electron during a peripheral, relativistic heavy-ion collision at extreme energies. We derive a factored form, which is exact in the high-energy limit, for the asymptotic channel solutions of the Dirac equation, and elucidate their close connection with gauge transformations which transform the dynamics into a representation in which the interaction between the electron and a distant ion is of short range. We describe the implications of this relationship for solving the time-dependent Dirac equation for extremely relativistic collisions.Comment: 12 pages, RevTeX, 2 figures, submitted to PR

    A light-fronts approach to electron-positron pair production in ultrarelativistic heavy-ion collisions

    Get PDF
    We perform a gauge-transformation on the time-dependent Dirac equation describing the evolution of an electron in a heavy-ion collision to remove the explicit dependence on the long-range part of the interaction. We solve, in an ultra-relativistic limit, the gauged-transformed Dirac equation using light-front variables and a light-fronts representation, obtaining non-perturbative results for the free pair-creation amplitudes in the collider frame. Our result reproduces the result of second-order perturbation theory in the small charge limit while non-perturbative effects arise for realistic charges of the ions.Comment: 39 pages, Revtex, 7 figures, submitted to PR

    Strong suppression of Coulomb corrections to the cross section of e+e- pair production in ultrarelativistic nuclear collisions

    Full text link
    The Coulomb corrections to the cross section of e+e−e^+e^- pair production in ultrarelativistic nuclear collisions are calculated in the next-to-leading approximation with respect to the parameter L=ln⁡γAγBL=\ln \gamma_A\gamma_B (γA,B\gamma_{A,B} are the Lorentz factors of colliding nuclei). We found considerable reduction of the Coulomb corrections even for large γAγB\gamma_A\gamma_B due to the suppression of the production of e+e−e^+e^- pair with the total energy of the order of a few electron masses in the rest frame of one of the nuclei. Our result explains why the deviation from the Born result were not observed in the experiment at SPS.Comment: 4 pages, RevTe

    The Mersey Estuary : sediment geochemistry

    Get PDF
    This report describes a study of the geochemistry of the Mersey estuary carried out between April 2000 and December 2002. The study was the first in a new programme of surveys of the geochemistry of major British estuaries aimed at enhancing our knowledge and understanding of the distribution of contaminants in estuarine sediments. The report first summarises the physical setting, historical development, geology, hydrography and bathymetry of the Mersey estuary and its catchment. Details of the sampling and analytical programmes are then given followed by a discussion of the sedimentology and geochemistry. The chemistry of the water column and suspended particulate matter have not been studied, the chief concern being with the geochemistry of the surface and near-surface sediments of the Mersey estuary and an examination of their likely sources and present state of contamination

    Coulomb Effects on Electromagnetic Pair Production in Ultrarelativistic Heavy-Ion Collisions

    Get PDF
    We discuss the implications of the eikonal amplitude on the pair production probability in ultrarelativistic heavy-ion transits. In this context the Weizs\"acker-Williams method is shown to be exact in the ultrarelativistic limit, irrespective of the produced particles' mass. A new equivalent single-photon distribution is derived which correctly accounts for the Coulomb distortions. As an immediate application, consequences for unitarity violation in photo-dissociation processes in peripheral heavy-ion encounters are discussed.Comment: 13 pages, 4 .eps figure

    Angular Distribution of Auger Electrons Emitted through the Resonant Transfer and Excitation Process Following O⁔âș+He Collisions

    Get PDF
    This Letter reports the first measurements of the angular distribution of Auger electrons emitted from the decay of the (1s2s2p2)3D O4+** doubly excited state formed predominantly through resonant transfer and excitation (RTE) in collisions of 13-MeV O5+ projectiles with He. The (1s2s2p2)3D angular distribution is strongly peaked along the beam direction, in agreement with recent calculations of the RTE angle-dependent impulse approximation. Furthermore, interference effects between the RTE and the elastic target direct-ionization channels are observed

    Organic Pollutants, Heavy Metals and Toxicity in Oil Spill impacted Salt Marsh Sediment Cores, Staten Island, New York City, USA

    Get PDF
    Sediment cores from Staten Island's salt marsh contain multiple historical oil spill events that impact ecological health. Microtox solid phase bioassay indicated moderate to high toxicity. Multiple spikes of TPH (6524 to 9586 mg/kg) and Σ16 PAH (15.5 to 18.9 mg/kg) were co-incident with known oil spills. A high TPH background of 400–700 mg/kg was attributed to diffuse sources. Depth-profiled metals Cu (1243 mg/kg), Zn (1814 mg/kg), Pb (1140 mg/kg), Ni (109 mg/kg), Hg (7 mg/kg), Cd 15 (mg/kg) exceeded sediment quality guidelines confirming adverse biological effects. Changes in Pb206/207 suggested three metal contaminant sources and diatom assemblages responded to two contamination events. Organic and metal contamination in Saw Mill Creek Marsh may harm sensitive biota, we recommend caution in the management of the 20–50 cm sediment interval because disturbance could lead to remobilisation of pre-existing legacy contamination into the waterway

    Relative Sea-Level Trends in New York City During the Past 1500 Years

    Get PDF
    New York City (NYC) is threatened by 21st-century relative sea-level (RSL) rise because it will experience a trend that exceeds the global mean and has high concentrations of low-lying infrastructure and socioeconomic activity. To provide a long-term context for anticipated trends, we reconstructed RSL change during the past ~1500 years using a core of salt-marsh sediment from Pelham Bay in The Bronx. Foraminifera and bulk-sediment ή13C values were used as sea-level indicators. The history of sediment accumulation was established by radiocarbon dating and recognition of pollution and land-use trends of known age in down-core elemental, isotopic, and pollen profiles. The reconstruction was generated within a Bayesian hierarchical model to accommodate multiple proxies and to provide a unified statistical framework for quantifying uncertainty. We show that RSL in NYC rose by ~1.70 m since ~575 CE (including ~0.38 m since 1850 CE). The rate of RSL rise increased markedly at 1812–1913 CE from ~1.0 to ~2.5 mm/yr, which coincides with other reconstructions along the US Atlantic coast. We investigated the possible influence of tidal-range change in Long Island Sound on our reconstruction using a regional tidal model, and we demonstrate that this effect was likely small. However, future tidal-range change could exacerbate the impacts of RSL rise in communities bordering Long Island Sound. The current rate of RSL rise is the fastest that NYC has experienced for \u3e1500 years, and its ongoing acceleration suggests that projections of 21st-century local RSL rise will be realized
    • 

    corecore