18 research outputs found

    Multi-level cascaded electromagnetically induced transparency in cold atoms using an optical nanofibre interface

    Full text link
    Ultrathin optical fibres integrated into cold atom setups are proving to be ideal building blocks for atom-photon hybrid quantum networks. Such optical nanofibres (ONF) can be used for the demonstration of nonlinear optics and quantum interference phenomena in atomic media. Here, we report on the observation of multilevel cascaded electromagnetically induced transparency (EIT) using an optical nanofibre to interface cold 87^{87}Rb atoms through the intense evanescent fields that can be achieved at ultralow probe and coupling powers. Both the probe (at 780 nm) and the coupling (at 776 nm) beams propagate through the nanofibre. The observed multipeak transparency spectra of the probe beam could offer a method for simultaneously slowing down multiple wavelengths in an optical nanofibre or for generating ONF-guided entangled beams, showing the potential of such an atom-nanofibre system for quantum information. We also demonstrate all-optical-switching in the all fibred system using the obtained EIT effect.Comment: 11 pages, 6 figure

    Autler-Townes splitting via frequency upconversion at ultra-low power levels in cold 87^{87}Rb atoms using an optical nanofiber

    Get PDF
    The tight confinement of the evanescent light field around the waist of an optical nanofiber makes it a suitable tool for studying nonlinear optics in atomic media. Here, we use an optical nanofiber embedded in a cloud of laser-cooled 87Rb for near-infrared frequency upconversion via a resonant two-photon process. Sub-nW powers of the two-photon beams, at 780 nm and 776 nm, co-propagate through the optical nanofiber and generation of 420 nm photons is observed. A measurement of the Autler-Townes splitting provides a direct measurement of the Rabi frequency of the 780 nm transition. Through this method, dephasings of the system can be studied. In this work, the optical nanofiber is used as an excitation and detection tool simultaneously, and it highlights some of the advantages of using fully fibered systems for nonlinear optics with atoms

    Interaction of laser-cooled 87^{87}Rb atoms with higher order modes of an optical nanofiber

    Full text link
    Optical nanofibres are used to confine light to subwavelength regions and are very promising tools for the development of optical fibre-based quantum networks using cold, neutral atoms. To date, experimental studies on atoms near nanofibres have focussed on fundamental fibre mode interactions. In this work, we demonstrate the integration of a few-mode optical nanofibre into a magneto-optical trap for 87^{87}Rb atoms. The nanofibre, with a waist diameter of \sim700 nm, supports both the fundamental and first group of higher order modes and is used for atomic fluorescence and absorption studies. In general, light propagating in higher order fibre modes has a greater evanescent field extension around the waist in comparison with the fundamental mode. By exploiting this behaviour, we demonstrate that the detected signal of fluorescent photons emitted from a cloud of cold atoms centred at the nanofibre waist is larger (\sim6 times) when higher order guided modes are considered as compared to the fundamental mode. Absorption of on-resonance, higher order mode probe light by the laser-cooled atoms is also observed. These advances should facilitate the realisation of atom trapping schemes based on higher order mode interference.Comment: 11 pages, 8 figure

    Temperature measurement of cold atoms using transient absorption of a resonant probe through an optical nanofibre

    Get PDF
    Optical nanofibres are ultrathin optical fibres with a waist diameter typically less than the wavelength of light being guided through them. Cold atoms can couple to the evanescent field of the nanofibre-guided modes and such systems are emerging as promising technologies for the development of atom-photon hybrid quantum devices. Atoms within the evanescent field region of an optical nanofibre can be probed by sending near or on-resonant light through the fibre; however, the probe light can detrimentally affect the properties of the atoms. In this paper, we report on the modification of the local temperature of laser-cooled 87Rb atoms in a magneto-optical trap centred around an optical nanofibre when near-resonant probe light propagates through it. A transient absorption technique has been used to measure the temperature of the affected atoms and temperature variations from 160 μk to 850 μk, for a probe power ranging from 0 to 50 nW, have been observed. This effect could have implications in relation to using optical nanofibres for probing and manipulating cold or ultracold atoms

    Spin selection rule for {\it S} level transitions in atomic rubidium under paraxial and nonparaxial two-photon excitation

    Get PDF
    We report on an experimental test of the spin selection rule for two-photon transitions in atoms. In particular, we demonstrate that the 5S1/26S1/25S_{1/2}\to 6S_{1/2} transition rate in a rubidium gas follows a quadratic dependency on the helicity parameter linked to the polarization of the excitation light. For excitation via a single Gaussian beam or two counterpropagating beams in a hot vapor cell, the transition rate scales as the squared degree of linear polarization. The rate reaches zero when the light is circularly polarized. In contrast, when the excitation is realized via an evanescent field near an optical nanofiber, the two-photon transition cannot be completely extinguished (theoretically, not lower than 13\% of the maximum rate, under our experimental conditions) by only varying the polarization of the fiber-guided light. Our findings lead to a deeper understanding of the physics of multiphoton processes in atoms in strongly nonparaxial light

    Observation of the 87Rb 5S1/2 to 4D3/2 electric quadrupole transition at 516.6 nm mediated via an optical nanofibre

    Get PDF
    Light guided by an optical nanofibre has a very steep evanescent field gradient extending from the fibre surface. This gradient can be exploited to drive electric quadrupole transitions in nearby quantum emitters. In this paper, we report on the observation of the 5S 1/2 →4D 3/2 electric quadrupole transition at 516.6 nm (in vacuum) in laser-cooled 87Rb atoms using only a few μW of laser power propagating through an optical nanofibre embedded in the atom cloud. This work extends the rangeof applications for optical nanofibres in atomic physics to include more fundamental tests such as high-precision measurements of parity non-conservation

    Rubidium atom spectral lineshapes in high intensity light fields near an optical nanofibre

    Get PDF
    The integration of cold atomic systems with optical nanofibres (ONFs) is an increasingly important experimental platform. Here, we report on the spectra observed during a strongly driven, single-frequency, two-photon excitation of cold rubidium atoms near an ONF. At resonance, two competitive processes, namely a higher excitation rate and stronger pushing of atoms from the nanofibre due to resonance scattering, need to be considered. We discuss the processes that lead to the observed two-peak profile in the fluorescence spectrum as the excitation laser is scanned across the resonance, noting that the presence of the ONF dramatically changes the fluorescence signal. These observations are useful for experiments where high electric field intensities near an ONF are needed, for example when driving nonlinear processes
    corecore