15 research outputs found

    Identification of larval sea basses (Centropristis spp.) using ribosomal DNA-specific molecular assays

    Get PDF
    This paper is not subject to U.S. copyright. The definitive version was published in Fishery Bulletin 106 (2008): 183-193.The identification of sea bass (Centropristis) larvae to species is difficult because of similar morphological characters, spawning times, and overlapping species ranges. Black sea bass (Centropristis striata) is an important fishery species and is currently considered to be overfished south of Cape Hatteras, North Carolina. We describe methods for identifying three species of sea bass larvae using polymerase chain reaction (PCR) and restriction fragment length polymorphism (RFLP) assays based on species-specific amplification of rDNA internal transcribed spacer reg ions. The assays were tested against DNA of ten other cooccurring reef fish species to ensure the assay’s specificity. Centropristis larvae were collected on three cruises during cross-shelf transects and were used to validate the assays. Seventysix Centropristis larvae were assayed and 69 (91%) were identified successfully. DNA was not amplified from 5% of the larvae and identification was inconclusive for 3% of the larvae. These assays can be used to identify sea bass eggs and larvae and will help to assess spawning locations, spawning times, and larval dispersal.Collection of larvae at sea was supported by funding from the National Science Foundation through OCE 9876565 to C. Jones, S. Thorrold, A. Valle-Levinson, and J. Hare. Additional funding for this project was provided by Office of National Marine Sanctuaries and by Grays Reef National Marine Sanctuary

    Exogenous Retinoic Acid During Gastrulation Induces Cartilaginous and Other Craniofacial Defects in Fundulus heteroclitus

    No full text
    Volume: 194Start Page: 281End Page: 29

    High-throughput microscope counting of cyanobacteria using “cellcount”, a newly developed analysis package in the R programming language

    No full text
    Molecular approaches and novel method validations require the precise enumeration of cyanobacteria to validate cyanobacteria density, typically done via microscopic counts which are considered time consuming and technically challenging. Cell counting software tools, such as ImageJ, can help decrease enumeration time, but may offer little flexibility in software modifications and may incorrectly quantify different morphotypes. Here we provide an overview of the development and uses of the draft package cellcount, from the programming language R. We used previously published code described in Pokrzywinski et al. 2019 as a blueprint for the development of new functions and overall organization. The result is an open-source package capable of being expanded and modified by novice and experienced R users. Here, we analyzed concentrations of several species to demonstrate cellcount versatility and potential limitations. In addition, we compared cellcount against standard enumeration practices and in vivo pigment fluorescence to demonstrate ease of use and rapid analysis while maintaining the same accuracy. With the formation of this high-throughput approach, researchers can utilize cellcount for many applications, such as qPCR standard curve development, the development of biomass standard curves, and validation of emerging quantification techniques

    Tectus niloticus (Tegulidae, Gastropod) as a novel vector of ciguatera poisoning : detection of Pacific ciguatoxins in toxic samples from Nuku Hiva Island (French Polynesia)

    No full text
    Ciguatera fish poisoning (CFP) is a foodborne disease caused by the consumption of seafood (fish and marine invertebrates) contaminated with ciguatoxins (CTXs) produced by dinoflagellates in the genus Gambierdiscus. The report of a CFP-like mass-poisoning outbreak following the consumption of Tectus niloticus (Tegulidae, Gastropod) from Anaho Bay on Nuku Hiva Island (Marquesas archipelago, French Polynesia) prompted field investigations to assess the presence of CTXs in T. niloticus. Samples were collected from Anaho Bay, 1, 6 and 28 months after this poisoning outbreak, as well as in Taiohae and Taipivai bays. Toxicity analysis using the neuroblastoma cell-based assay (CBA-N2a) detected the presence of CTXs only in Anaho Bay T. niloticus samples. This is consistent with qPCR results on window screen samples indicating the presence of Gambierdiscus communities dominated by the species G. polynesiensis in Anaho Bay. Liquid chromatography-tandem mass spectrometry (LC-MS/MS) analyses revealed that P-CTX-3B was the major congener, followed by P-CTX-3C, P-CTX-4A and P-CTX-4B in toxic samples. Between July 2014 and November 2016, toxin content in T. niloticus progressively decreased, but was consistently above the safety limit recommended for human consumption. This study confirms for the first time T. niloticus as a novel vector of CFP in French Polynesia

    Toxicological investigations on the sea urchin Tripneustes gratilla (Toxopneustidae, Echinoid) from Anaho Bay (Nuku Hiva, French Polynesia) : evidence for the presence of Pacific ciguatoxins

    No full text
    The sea urchin Tripneustes gratilla (Toxopneustidae, Echinoids) is a source of protein for many islanders in the Indo-West Pacific. It was previously reported to occasionally cause ciguatera-like poisoning; however, the exact nature of the causative agent was not confirmed. In April and July 2015, ciguatera poisonings were reported following the consumption of T. gratilla in Anaho Bay (Nuku Hiva Island, Marquesas archipelago, French Polynesia). Patient symptomatology was recorded and sea urchin samples were collected from Anaho Bay in July 2015 and November 2016. Toxicity analysis using the neuroblastoma cell-based assay (CBA-N2a) detected the presence of ciguatoxins (CTXs) in T. gratilla samples. Gambierdiscus species were predominant in the benthic assemblages of Anaho Bay, and G. polynesiensis was highly prevalent in in vitro cultures according to qPCR results. Liquid chromatography-tandem mass spectrometry (LC-MS/MS) analyses revealed that P-CTX-3B was the major ciguatoxin congener in toxic sea urchin samples, followed by 51-OH-P-CTX-3C, P-CTX-3C, P-CTX-4A, and P-CTX-4B. Between July 2015 and November 2016, the toxin content in T. gratilla decreased, but was consistently above the safety limit allowed for human consumption. This study provides evidence of CTX bioaccumulation in T. gratilla as a cause of ciguatera-like poisoning associated with a documented symptomatology

    Toxicological investigations on the sea urchin Tripneustes gratilla (Toxopneustidae, Echinoid) from Anaho Bay (Nuku Hiva, French Polynesia) : evidence for the presence of Pacific ciguatoxins

    No full text
    The sea urchin Tripneustes gratilla (Toxopneustidae, Echinoids) is a source of protein for many islanders in the Indo-West Pacific. It was previously reported to occasionally cause ciguatera-like poisoning; however, the exact nature of the causative agent was not confirmed. In April and July 2015, ciguatera poisonings were reported following the consumption of T. gratilla in Anaho Bay (Nuku Hiva Island, Marquesas archipelago, French Polynesia). Patient symptomatology was recorded and sea urchin samples were collected from Anaho Bay in July 2015 and November 2016. Toxicity analysis using the neuroblastoma cell-based assay (CBA-N2a) detected the presence of ciguatoxins (CTXs) in T. gratilla samples. Gambierdiscus species were predominant in the benthic assemblages of Anaho Bay, and G. polynesiensis was highly prevalent in in vitro cultures according to qPCR results. Liquid chromatography-tandem mass spectrometry (LC-MS/MS) analyses revealed that P-CTX-3B was the major ciguatoxin congener in toxic sea urchin samples, followed by 51-OH-P-CTX-3C, P-CTX-3C, P-CTX-4A, and P-CTX-4B. Between July 2015 and November 2016, the toxin content in T. gratilla decreased, but was consistently above the safety limit allowed for human consumption. This study provides evidence of CTX bioaccumulation in T. gratilla as a cause of ciguatera-like poisoning associated with a documented symptomatology
    corecore