3 research outputs found

    Stress-Induced Premature Senescence Related to Oxidative Stress in the Developmental Programming of Nonalcoholic Fatty Liver Disease in a Rat Model of Intrauterine Growth Restriction.

    Get PDF
    Metabolic syndrome (MetS) refers to cardiometabolic risk factors, such as visceral obesity, dyslipidemia, hyperglycemia/insulin resistance, arterial hypertension and non-alcoholic fatty liver disease (NAFLD). Individuals born after intrauterine growth restriction (IUGR) are particularly at risk of developing metabolic/hepatic disorders later in life. Oxidative stress and cellular senescence have been associated with MetS and are observed in infants born following IUGR. However, whether these mechanisms could be particularly associated with the development of NAFLD in these individuals is still unknown. IUGR was induced in rats by a maternal low-protein diet during gestation versus. a control (CTRL) diet. In six-month-old offspring, we observed an increased visceral fat mass, glucose intolerance, and hepatic alterations (increased transaminase levels, triglyceride and neutral lipid deposit) in male rats with induced IUGR compared with the CTRL males; no differences were found in females. In IUGR male livers, we identified some markers of stress-induced premature senescence (SIPS) (lipofuscin deposit, increased protein expression of p21 <sup>WAF</sup> , p16 <sup>INK4a</sup> and Acp53, but decreased pRb/Rb ratio, foxo-1 and sirtuin-1 protein and mRNA expression) associated with oxidative stress (higher superoxide anion levels, DNA damages, decreased Cu/Zn SOD, increased catalase protein expression, increased nfe2 and decreased keap1 mRNA expression). Impaired lipogenesis pathways (decreased pAMPK/AMPK ratio, increased pAKT/AKT ratio, SREBP1 and PPARγ protein expression) were also observed in IUGR male livers. At birth, no differences were observed in liver histology, markers of SIPS and oxidative stress between CTRL and IUGR males. These data demonstrate that the livers of IUGR males at adulthood display SIPS and impaired liver structure and function related to oxidative stress and allow the identification of specific therapeutic strategies to limit or prevent adverse consequences of IUGR, particularly metabolic and hepatic disorders

    Could Repeated Cardio-Renal Injury Trigger Late Cardiovascular Sequelae in Extreme Endurance Athletes?

    No full text
    Regular exercise confers multifaceted and well-established health benefits. Yet, transient and asymptomatic increases in markers of cardio-renal injury are commonly observed in ultra-endurance athletes during and after competition. This has raised concerns that chronic recurring insults could cause long-term cardiac and/or renal damage. Indeed, extreme endurance exercise (EEE) over decades has sometimes been linked with untoward cardiac effects, but a causal relation with acute injury markers has not yet been established. Here, we summarize the current knowledge on markers of cardiac and/or renal injury in EEE athletes, outline the possible interplay between cardiac and kidney damage, and explore the roles of various factors in the development of potential exercise-related cardiac damage, including underlying diseases, medication, sex, training, competition, regeneration, mitochondrial dysfunction, oxidative stress, and inflammation. In conclusion, despite the undisputed health benefits of regular exercise, we speculate, based on the intimate link between heart and kidney diseases, that in rare cases excessive endurance sport may induce adverse cardio-renal interactions that under specific, hitherto undefined conditions could result in persistent cardiac damage. We highlight future research priorities and provide decision support for athletes and clinical consultants who are seeking safe strategies for participation in EEE training and competition

    Salt-Sensitive Hypertension in GR<sup>+/-</sup> Rats Is Accompanied with Dysregulation in Adrenal Soluble Epoxide Hydrolase and Polyunsaturated Fatty Acid Pathways.

    No full text
    Mutations within the glucocorticoid receptor (GR) gene locus lead to glucocorticoid resistance which is characterized by several clinical symptoms such as adrenal gland hyperplasia and salt-sensitive hypertension, although the underlying mechanisms are still unknown. We studied GR haploinsufficient (GR &lt;sup&gt;+/-&lt;/sup&gt; ) Sprague Dawley rats which, on a standard diet, showed significantly increased plasma aldosterone and corticosterone levels and an adrenocortex hyperplasia accompanied by a normal systolic blood pressure. Following a high salt diet, these rats developed salt-sensitive hypertension and maintained elevated enzyme-soluble epoxide hydrolase (sEH) in adrenal glands, while sEH was significantly decreased in wild-type rats. Furthermore, GR &lt;sup&gt;+/-&lt;/sup&gt; rats showed dysregulation of the equilibrated linoleic and arachidonic acid pathways, with a significant increase of less active metabolites such as 8,9-DiHETrE. In Sprague Dawley rats, GR haploinsufficiency induced steroid disturbances, which provoked hypertension only in combination with high salt intake, which was accompanied by disturbances in sEH and fatty acid metabolism. Our results suggest that sEH inhibition could be a potential target to treat hypertension in patients with GR haploinsufficiency
    corecore