884 research outputs found
Use of 2G coated conductors for efficient shielding of DC magnetic fields
This paper reports the results of an experimental investigation of the
performance of two types of magnetic screens assembled from YBa2Cu3O7-d (YBCO)
coated conductors. Since effective screening of the axial DC magnetic field
requires the unimpeded flow of an azimuthal persistent current, we demonstrate
a configuration of a screening shell made out of standard YBCO coated conductor
capable to accomplish that. The screen allows the persistent current to flow in
the predominantly azimuthal direction at a temperature of 77 K. The persistent
screen, incorporating a single layer of superconducting film, can attenuate an
external magnetic field of up to 5 mT by more than an order of magnitude. For
comparison purposes, another type of screen which incorporates low critical
temperature quasi-persistent joints was also built. The shielding technique we
describe here appears to be especially promising for the realization of large
scale high-Tc superconducting screens.Comment: 8 pages, 3 figure
Classical analogy for the deflection of flux avalanches by a metallic layer
Sudden avalanches of magnetic flux bursting into a superconducting sample
undergo deflections of their trajectories when encountering a conductive layer
deposited on top of the superconductor. Remarkably, in some cases flux is
totally excluded from the area covered by the conductive layer. We present a
simple classical model that accounts for this behaviour and considers a
magnetic monopole approaching a semi-infinite conductive plane. This model
suggests that magnetic braking is an important mechanism responsible for
avalanche deflection.Comment: 14 pages, 5 figure
Diquark and Pion Condensation in Random Matrix Models for two-color QCD
We introduce a random matrix model with the symmetries of QCD with two colors
at nonzero isospin and baryon chemical potentials and temperature. We analyze
its phase diagram and find phases with condensation of pion and diquark states
in addition to the phases with spontaneously broken chiral symmetries. In the
limit of small chemical potentials and quark masses, we reproduce the mean
field results obtained from chiral Lagrangians. As in the case of QCD with
three colors, the presence of two chemical potentials breaks the flavor
symmetry and leads to phases that are characterized by different behaviors of
the chiral condensates for each flavor. In particular, the phase diagram we
obtain is similar to QCD with three colors and three flavors of quarks of equal
masses at zero baryon chemical potential and nonzero isospin and strange
chemical potentials. A tricritical point of the superfluid transitions found in
lattice calculations and from an analysis in terms of chiral Lagrangians does
not appear in the random matrix model. Remarkably, at fixed isospin chemical
potential, for the regions outside of the superfluid phases, the phase diagram
in the temperature - baryon chemical potential plane for two colors and three
colors are qualitatively the same.Comment: 19 pages, 7 figures, RevTeX
Random matrix model for chiral symmetry breaking and color superconductivity in QCD at finite density
We consider a random matrix model which describes the competition between
chiral symmetry breaking and the formation of quark Cooper pairs in QCD at
finite density. We study the evolution of the phase structure in temperature
and chemical potential with variations of the strength of the interaction in
the quark-quark channel and demonstrate that the phase diagram can realize a
total of six different topologies. A vector interaction representing
single-gluon exchange reproduces a topology commonly encountered in previous
QCD models, in which a low-density chiral broken phase is separated from a
high-density diquark phase by a first-order line. The other five topologies
either do not possess a diquark phase or display a new phase and new critical
points. Since these five cases require large variations of the coupling
constants away from the values expected for a vector interaction, we conclude
that the phase diagram of finite density QCD has the topology suggested by
single-gluon exchange and that this topology is robust.Comment: ReVTeX, 22 pages, 14 figures. An animated gif movie showing the
evolution of the phase diagram with the coupling constants can be viewed at
http://www.nbi.dk/~vdheyden/QCDpd.htm
Random matrix models for phase diagrams
We describe a random matrix approach that can provide generic and readily
soluble mean-field descriptions of the phase diagram for a variety of systems
ranging from QCD to high-T_c materials. Instead of working from specific
models, phase diagrams are constructed by averaging over the ensemble of
theories that possesses the relevant symmetries of the problem. Although
approximate in nature, this approach has a number of advantages. First, it can
be useful in distinguishing generic features from model-dependent details.
Second, it can help in understanding the `minimal' number of symmetry
constraints required to reproduce specific phase structures. Third, the
robustness of predictions can be checked with respect to variations in the
detailed description of the interactions. Finally, near critical points, random
matrix models bear strong similarities to Ginsburg-Landau theories with the
advantage of additional constraints inherited from the symmetries of the
underlying interaction. These constraints can be helpful in ruling out certain
topologies in the phase diagram. In this Key Issue, we illustrate the basic
structure of random matrix models, discuss their strengths and weaknesses, and
consider the kinds of system to which they can be applied.Comment: 29 pages, 2 figures, uses iopart.sty. Author's postprint versio
Fatty-acid binding proteins modulate sleep and enhance long-term memory consolidation in Drosophila
Sleep is thought to be important for memory consolidation, since sleep deprivation has been shown to interfere with memory processing. However, the effects of augmenting sleep on memory formation are not well known, and testing the role of sleep in memory enhancement has been limited to pharmacological and behavioral approaches. Here we test the effect of overexpressing the brain-type fatty acid binding protein (Fabp7) on sleep and long-term memory (LTM) formation in Drosophila melanogaster. Transgenic flies carrying the murine Fabp7 or the Drosophila homologue dFabp had reduced baseline sleep but normal LTM, while Fabp induction produced increases in both net sleep and LTM. We also define a post-training consolidation "window" that is sufficient for the observed Fabp-mediated memory enhancement. Since Fabp overexpression increases consolidated daytime sleep bouts, these data support a role for longer naps in improving memory and provide a novel role for lipid-binding proteins in regulating memory consolidation concurrently with changes in behavioral state
An AC susceptometer for the characterization of large, bulk superconducting samples
The main purpose of this work was to design, develop and construct a simple,
low-cost AC susceptometer to measure large, bulk superconducting samples (up to
32 mm in diameter) in the temperature range 78-120 K. The design incorporates a
double heating system that enables a high heating rate (25 K/hour) while
maintaining a small temperature gradient (< 0.2 K) across the sample. The
apparatus can be calibrated precisely using a copper coil connected in series
with the primary coil. The system has been used successfully to measure the
temperature dependence of the AC magnetic properties of entire RE-Ba-Cu-O
[(RE)BCO] bulk superconducting domains. A typical AC susceptibility measurement
run from 78 K to 95 K takes about 2 hours, with excellent temperature
resolution (temperature step ~ 4 mK) around the critical temperature, in
particular.Comment: 25 pages, 7 figures. Accepted for publication in Measurement Science
and Technolog
Bulk high-Tc superconductors with drilled holes: how to arrange the holes to maximize the trapped magnetic flux ?
Drilling holes in a bulk high-Tc superconductor enhances the oxygen annealing
and the heat exchange with the cooling liquid. However, drilling holes also
reduces the amount of magnetic flux that can be trapped in the sample. In this
paper, we use the Bean model to study the magnetization and the current line
distribution in drilled samples, as a function of the hole positions. A single
hole perturbs the critical current flow over an extended region that is bounded
by a discontinuity line, where the direction of the current density changes
abruptly. We demonstrate that the trapped magnetic flux is maximized if the
center of each hole is positioned on one of the discontinuity lines produced by
the neighbouring holes. For a cylindrical sample, we construct a polar
triangular hole pattern that exploits this principle; in such a lattice, the
trapped field is ~20% higher than in a squared lattice, for which the holes do
not lie on discontinuity lines. This result indicates that one can
simultaneously enhance the oxygen annealing, the heat transfer, and maximize
the trapped field
The QCD Phase Diagram at Nonzero Temperature, Baryon and Isospin Chemical Potentials in Random Matrix Theory
We introduce a random matrix model with the symmetries of QCD at finite
temperature and chemical potentials for baryon number and isospin. We analyze
the phase diagram of this model in the chemical potential plane for different
temperatures and quark masses. We find a rich phase structure with five
different phases separated by both first and second order lines. The phases are
characterized by the pion condensate and the chiral condensate for each of the
flavors. In agreement with lattice simulations, we find that in the phase with
zero pion condensate the critical temperature depends in the same way on the
baryon number chemical potential and on the isospin chemical potential. At
nonzero quark mass, we remarkably find that the critical end point at nonzero
temperature and baryon chemical potential is split in two by an arbitrarily
small isospin chemical potential. As a consequence, there are two crossovers
that separate the hadronic phase from the quark-gluon plasma phase at high
temperature. Detailed analytical results are obtained at zero temperature and
in the chiral limit.Comment: 13 pages, 5 figures, REVTeX
Pulsed-field magnetization of drilled bulk high-temperature superconductors: flux front propagation in the volume and on the surface
We present a method for characterizing the propagation of the magnetic flux
in an artificially drilled bulk high-temperature superconductor (HTS) during a
pulsed-field magnetization. As the magnetic pulse penetrates the cylindrical
sample, the magnetic flux density is measured simultaneously in 16 holes by
means of microcoils that are placed across the median plane, i.e. at an equal
distance from the top and bottom surfaces, and close to the surface of the
sample. We discuss the time evolution of the magnetic flux density in the holes
during a pulse and measure the time taken by the external magnetic flux to
reach each hole. Our data show that the flux front moves faster in the median
plane than on the surface when penetrating the sample edge; it then proceeds
faster along the surface than in the bulk as it penetrates the sample further.
Once the pulse is over, the trapped flux density inside the central hole is
found to be about twice as large in the median plane than on the surface. This
ratio is confirmed by modelling
- …
