28 research outputs found

    Self-consistent approximations: application to a quasiparticle description of the thermodynamic properties of relativistic plasmas

    Get PDF
    We generalize the concept of conserving,\Phi-derivable, approximations to relativistic field theories. Treating the interaction field as a dynamical degree of freedom, we derive the thermodynamical potential in terms of fully dressed propagators, an approach which allows us to resolve the entropy of a relativistic plasma into contributions from its interacting elementary excitations. We illustrate the derivation for a hot QED plasma of massless particles. We also discuss how the self-consistency of the treatment manifests itself into relationships between the contributions from interaction and matter fields.Comment: 9 pages, 1 eps figure, to appear in "Progress in Nonequilibrium Green's functions.", M. Bonitz (Ed.), World Scientific, Singapore 200

    Microscopic spectral density in random matrix models for chiral and diquark condensation

    Full text link
    We examine random matrix models of QCD which are capable of supporting both chiral and diquark condensation. A numerical study of the spectral densities near zero virtuality shows that the introduction of color in the interactions does not alter the one-body results imposed by chiral symmetry. A model with three colors has the spectral density predicted for the chiral ensemble with a Dyson index beta = 2; a pseudoreal model with two colors exhibits the spectral density of the chiral ensemble with beta = 1.Comment: 6 pages, 3 eps figures, uses revtex4 and graphicx. v2 : minor editions, Fig. 3 shows relative deviations rather than absolute. Version to appear in PR

    Random matrix model for antiferromagnetism and superconductivity on a two-dimensional lattice

    Full text link
    We suggest a new mean field method for studying the thermodynamic competition between magnetic and superconducting phases in a two-dimensional square lattice. A partition function is constructed by writing microscopic interactions that describe the exchange of density and spin-fluctuations. A block structure dictated by spin, time-reversal, and bipartite symmetries is imposed on the single-particle Hamiltonian. The detailed dynamics of the interactions are neglected and replaced by a normal distribution of random matrix elements. The resulting partition function can be calculated exactly. The thermodynamic potential has a structure which depends only on the spectrum of quasiparticles propagating in fixed condensation fields, with coupling constants that can be related directly to the variances of the microscopic processes. The resulting phase diagram reveals a fixed number of phase topologies whose realizations depend on a single coupling-parameter ratio, alpha. Most phase topologies are realized for a broad range of values of alpha and can thus be considered robust with respect to moderate variations in the detailed description of the underlying interactions.Comment: 21 pages, 8 figures, RevTex 4. Minor grammatical errors corrected in the last versio

    Random matrix models for chiral and diquark condensation

    Full text link
    We consider random matrix models for the thermodynamic competition between chiral symmetry breaking and diquark condensation in QCD at finite temperature and finite baryon density. The models produce mean field phase diagrams whose topology depends solely on the global symmetries of the theory. We discuss the block structure of the interactions that is imposed by chiral, spin, and color degrees of freedom and comment on the treatment of density and temperature effects. Extension of the coupling parameters to a larger class of theories allows us to investigate the robustness of the phase topology with respect to variations in the dynamics of the interactions. We briefly study the phase structure as a function of coupling parameters and the number of colors.Comment: 6 pages, 2 figures, proceedings of the workshop "Three Days of Hadronic Physics", Joint Meeting Heidelberg-Liege-Paris-Rostock, 16/12/2004-18/12/2004, Sol Cress, Spa, Belgium. v2: typographical errors corrected in reference

    Self-consistent approximations in relativistic plasmas: Quasiparticle analysis of the thermodynamic properties

    Get PDF
    We generalize the concept of conserving, Phi-derivable, approximations to relativistic field theories. Treating the interaction field as a dynamical degree of freedom, we derive the thermodynamic potential in terms of fully dressed propagators, an approach which allows us to resolve the entropy of a relativistic plasma into contributions from its interacting elementary excitations. We illustrate the derivation for a hot relativistic system governed by electromagnetic interactions.Comment: 22 pages, 3 figures, submitted to J. Stat. Phys. 98-74, a special issue dedicated to Leo Kadanoff on his sixtieth birthda

    Numerical simulation of the magnetization of high-temperature superconductors: 3D finite element method using a single time-step iteration

    Full text link
    We make progress towards a 3D finite-element model for the magnetization of a high temperature superconductor (HTS): We suggest a method that takes into account demagnetisation effects and flux creep, while it neglects the effects associated with currents that are not perpendicular to the local magnetic induction. We consider samples that are subjected to a uniform magnetic field varying linearly with time. Their magnetization is calculated by means of a weak formulation in the magnetostatic approximation of the Maxwell equations (A-phi formulation). An implicit method is used for the temporal resolution (Backward Euler scheme) and is solved in the open source solver GetDP. Picard iterations are used to deal with the power law conductivity of HTS. The finite element formulation is validated for an HTS tube with large pinning strength through the comparison with results obtained with other well-established methods. We show that carrying the calculations with a single time-step (as opposed to many small time-steps) produce results with excellent accuracy in a drastically reduced simulation time. The numerical method is extended to the study of the trapped magnetization of cylinders that are drilled with different arrays of columnar holes arranged parallel to the cylinder axis

    Magnetic shielding properties of high-temperature superconducting tubes subjected to axial fields

    Full text link
    We have experimentally studied the magnetic shielding properties of a cylindrical shell of BiPbSrCaCuO subjected to low frequency AC axial magnetic fields. The magnetic response has been investigated as a function of the dimensions of the tube, the magnitude of the applied field and the frequency. These results are explained quantitatively by employing the method of Brandt (1998 Phys. Rev. B 58 6506) with a Jc(B) law appropriate for a polycrystalline material. Specifically, we observe that the applied field can sweep into the central region either through the thickness of the shield or through the opening ends, the latter mechanism being suppressed for long tubes. For the first time, we systematically detail the spatial variation of the shielding factor (the ratio of the applied field over the internal magnetic field) along the axis of a high-temperature superconducting tube. The shielding factor is shown to be constant in a region around the centre of the tube, and to decrease as an exponential in the vicinity of the ends. This spatial dependence comes from the competition between two mechanisms of field penetration. The frequency dependence of the shielding factor is also discussed and shown to follow a power law arising from the finite creep exponent n.Comment: 22 pages, 10 figure

    Regulation of inositol 1,4,5-trisphosphate-induced Ca2+ release by reversible phosphorylation and dephosphorylation

    Get PDF
    AbstractThe inositol 1,4,5-trisphosphate (IP3) receptor (IP3R) is a universal intracellular Ca2+-release channel. It is activated after cell stimulation and plays a crucial role in the initiation and propagation of the complex spatio-temporal Ca2+ signals that control cellular processes as different as fertilization, cell division, cell migration, differentiation, metabolism, muscle contraction, secretion, neuronal processing, and ultimately cell death. To achieve these various functions, often in a single cell, exquisite control of the Ca2+ release is needed. This review aims to highlight how protein kinases and protein phosphatases can interact with the IP3R or with associated proteins and so provide a large potential for fine tuning the Ca2+-release activity and for creating efficient Ca2+ signals in subcellular microdomains

    Measurement of the magnetic field inside the holes of a drilled bulk high-Tc superconductor

    Full text link
    We use macroscopic holes drilled in a bulk YBCO superconductor to probe its magnetic properties in the volume of the sample. The sample is subjected to an AC magnetic flux with a density ranging from 30mT to 130mT and the flux in the superconductor is probed by miniature coils inserted in the holes. In a given hole, three different penetration regimes can be observed: (i) the shielded regime, where no magnetic flux threads the hole; (ii) the gradual penetration regime, where the waveform of the magnetic field has a clipped sine shape whose fundamental component scales with the applied field; and (iii) the flux concentration regime, where the waveform of the magnetic field is nearly a sine wave, with an amplitude exceeding that of the applied field by up to a factor of two. The distribution of the penetration regimes in the holes is compared with that of the magnetic flux density at the top and bottom surfaces of the sample, and is interpreted with the help of optical polarized light micrographs of these surfaces. We show that the measurement of the magnetic field inside the holes can be used as a local characterization of the bulk magnetic properties of the sample
    corecore