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hate (IP3) receptor (IP3R) is a universal intracellular Ca2+-release channel. It is
activated after cell stimulation and plays a crucial role in the initiation and propagation of the complex
spatio-temporal Ca2+ signals that control cellular processes as different as fertilization, cell division, cell
migration, differentiation, metabolism, muscle contraction, secretion, neuronal processing, and ultimately
cell death. To achieve these various functions, often in a single cell, exquisite control of the Ca2+ release is
needed. This review aims to highlight how protein kinases and protein phosphatases can interact with the
IP3R or with associated proteins and so provide a large potential for fine tuning the Ca2+-release activity and
for creating efficient Ca2+ signals in subcellular microdomains.

© 2008 Elsevier B.V. All rights reserved.
1. Introduction

It becomes increasingly clear that intracellular Ca2+ signals
controlling many vital cellular processes are confined to subcellular
microdomains. The molecular architecture of such microdomains is a
matter of intense investigation but is as yet still poorly understood.
Phosphorylation/dephosphorylation of the inositol 1,4,5-trisphosphate
(IP3) receptor (IP3R) and/or of associated proteins seems however to
play a crucial role. The IP3R was found to be a substrate for a wide
variety of different protein kinases and phosphatases and there is a
very large number of in silico predicted consensus sites for
phosphorylation as well as for docking of kinases and/or of their
anchoring proteins. Given the fact that many of these sites are
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differentially present in the various IP3R isoforms, this diversity opens
a huge potential for regulatory fine tuning of Ca2+ release and
signaling. Phosphorylation of the IP3R is involved in many Ca2+-
signaling pathways linked to important cellular functions ranging
from oocyte maturation to cell death. It is therefore our aim to present
a comprehensive state-of-the-art review on the topic, and to indicate a
number of issues that need further investigation.

2. The inositol 1,4,5-trisphosphate receptor

Cell activation by extracellular agonists as hormones, growth
factors and neurotransmitters often leads to phospholipase-C (PLC)
activation and subsequent intracellular IP3 production. IP3 diffuses
through the cytoplasm until it binds and activates its receptor. This
IP3R is an intracellular Ca2+-release channel predominantly located
on the endoplasmic reticulum (ER) and responsible for a controlled
release of Ca2+ ions in the cytoplasm, which is crucial for setting up
complex spatio-temporal Ca2+ signals [1,2].

The functional IP3R/Ca2+-release channel is a tetramer. The four
subunits have a similar general structure, but IP3R diversity is created
in higher organisms by (i) the presence of 3 genes (ITPR1, ITPR2 and
ITPR3) encoding for IP3R1, -2 and 3 resp., (ii) the occurrence of splicing
events, and (iii) the possible formation of homo- and heterotetramers
[3]. Each subunit consists of about 2700 a.a., and the functional Ca2+-
release channel therefore has amolecularmass of around 1.2MDa. The
linear sequence of the IP3R consists of three large regions, an N-
terminally located IP3-binding region of about 600 a.a., a large
modulatory and transducing region (about 1600 a.a.) and a small
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C-terminal region (about 500 a.a.) containing the 6 transmembrane
domains. More recently, it has been shown that the N-terminal IP3-
binding region is composed of a suppressor domain and an IP3-
binding core, while the C-terminal region is composed of a channel
region and a coupling region (Fig. 1) [4]. Most work has been
performed on the ubiquitously expressed IP3R1, but it is assumed
that the various isoforms have the same general structure. In spite
of their similarity, it is however clear that the various IP3R isoforms
can subtly differ in their properties. Their affinity for IP3 displays a
rank-order IP3R2N IP3R1N IP3R3 [5,6], which seems predominantly
due to differences at the level of the suppressor domains [7].
Additionally, differences in sensitivity for regulatory factors as e.g.
Ca2+, ATP and redox status were observed [5,8-15].

Cryo-electron-microscopy analysis demonstrated that IP3R1, and
the other isoforms probably as well, has a quite open structure [16]
allowing easy access of regulatory proteins to various sites on the IP3R.
In addition, the IP3R structure undergoes major conformational
changes under influence of Ca2+ [17]. Hence, many proteins can
directly interact with the IP3R, some of them at least in a
conformation- or isoform-specific way [3,18,19].

The physiological relevance of the existence of multiple IP3R
isoforms is reflected in the fact that they are expressed differently and
at varying subcellular localizations in the different cell types and
organs [20] and that their expression pattern changes during cellular
differentiation and development as well as under patho(physio)
logical situations [3].

Not unexpectedly, the IP3R isoforms contain on their sequences
multiple phosphorylation consensus sites and many docking sites for
protein kinases and phosphatases. Today at least 12 different protein
kinases are known to directly phosphorylate the IP3R. This, combined
with the fact that some important regulatory proteins associated with
the IP3R (IRBIT, see part 3, and Bcl-2, see part 4) are themselves
Fig. 1. The structure of the IP3R1/Ca2+-release channel showing the proteins and the sites in
domains are indicated at the bottom of the figure [4]. Splice sites (S1, S2 and S3) are indicate
shown with their identified interaction sites on IP3R1. The interaction of IRBIT (broad arrow
suppressor domain as well. The coupling of PKC via RACK1 has not yet been described and is
has not yet been determinedwith certainty are not shown. Identified phosphorylation sites a
pink (by ERK) and orange (by Fyn). For more details, please see text.
regulated by phosphorylation and/or can bind protein kinases or
phosphatases, makes the understanding of the regulation of the IP3R
by phosphorylation/dephosphorylation even more complex and the
functional consequences of this regulation are still only partially
understood.

3. IRBIT, the IP3R-binding protein released by IP3, and its role in
regulating the phosphorylation status of IP3R

3.1. Structure of IRBIT

IRBIT, the IP3R-binding protein released by IP3, corresponds to the
S-adenosyl-L-homocysteine hydrolase (AHCY)-like protein AHCYL1
(also termed DCAL, dendritic cell-expressed AHCY-like protein) and is
composed of a specific N-terminal IRBIT domain and a C-terminal
AHCY domain [21,22].

The AHCY domain of IRBIT closely resembles AHCY but contains
critical mutations (V256 and V450 instead of T158 and H353 resp., see
Fig. 2) and does not demonstrate any form of adenosylhomocysteine-
hydrolase activity [23]. It contains a PDZ-ligand that mediates an IP3-
insensitive interaction with the IP3R [24]. In contrast herewith the
IRBIT domain enables binding to the IP3R in a way that can be
competed by IP3 and additionally contains a protein phosphatase
(PP) 1 docking site, several phosphorylation sites and a PEST motif
(a.a. 65 to 92) that targets the domain for proteolytic degradation
(Fig. 2).

IRBIT was discovered as a ubiquitous protein with its highest
expression levels in neuronal tissue and the possibility to interact with
and to inhibit IP3R1, -2 and -3 [21]. During early embryogenesis, its
expression is tightly regulated; its microinjection in zebrafish
embryos results in a dorsalized phenotype that is similar to the
results of pharmacological inhibition of the IP3R [25,26].
volved in its regulation by phosphorylation/dephosphorylation. The various functional
d. Docking proteins (black), protein kinases (green) and protein phosphatases (red) are
) with the IP3R stretches over the complete IP3-binding core, and may encompass the
therefore indicated by a dotted line. Proteins of which the interaction site with the IP3R1
re shown in yellow (phosphorylation by PKA/PKG), blue (by PKB), pale green (by CDK1),



Fig. 2. The modular structure of AHCY and IRBIT (AHCYL1). IRBIT contains a C-terminal AHCY domain that is preceded by the specific IRBIT domain. The AHCY domain of IRBIT
contains a conserved PDZ ligand (orange), but has no enzymatic AHCY activity due to mutations of T158 and H353 to two valine residues (V256 and V450, indicated by asterisks). In
contrast with AHCY, it also contains a coiled-coil region (CC, green). The IRBIT domain is composed of a PP1-binding site (PP1, red) followed by a PEST-motif (PEST, blue) that can be
cleaved and that contains several phosphorylation sites: phosphorylation of S68 (grey circle) by an unidentified Ca2+-activated kinase allows subsequent phosphorylation of S71 and
S74 by CK1 (purple circles), while the protein kinases involved in the phosphorylation of T82, S84 and S85 (grey circles) are also not yet identified.
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3.2. Regulation of the IRBIT domain via (de)phosphorylation

The interaction of IRBIT with the IP3R is dependent on phosphor-
ylation of the IRBIT domain and occurs directly, without the need for
adaptor proteins [24]. The critical phosphorylation sites reside within
the PEST motif, where phosphorylation of S68 allows for subsequent
phosphorylation of S71 and S74 by casein kinase (CK) 1 [27,28]. The
latter two phosphorylations are both necessary and sufficient to
enable IRBIT to bind to and inhibit the IP3R [27]. The identity of the
protein kinase that in vivo phosphorylates S68 remains to be
elucidated but interestingly all five candidates that are predicted
from in silico analysis (protein kinase D, Ca2+/CaM-dependent
protein kinase II (CaMKII) and IV, AMP-activated protein kinase and
mitogen-activated protein kinase (MAP kinase)-activated protein
kinase 2) are Ca2+-activated protein kinases [27]. The functional
relevance of the three other phosphorylation sites (T82, S84 and S85

[29]) is not known, but they could either enhance the phosphoryla-
tion-dependent interaction of IRBIT with its targets, or alternatively,
be a way to target IRBIT to different interaction partners.

The IRBIT domain is inactivated by dephosphorylation. PP1 has
previously been shown in complex with the IP3R via both a direct
interaction with the C-terminal tail of the IP3R [30], and an indirect
interaction via the large scaffold protein AKAP9 [31] (Fig. 1). We
recently showed that PP1 also binds directly to the IRBIT domain,
whereby the so-called RVXFmotif, [R/K]-X0–1-[I/V]-{P}-F, functions as
the docking site ({P} indicates any a.a. except proline) [27]. PP1
specifically dephosphorylates S68, but neither S71 nor S74. Noteworthy,
the dephosphorylation of S68 is strictly dependent on the direct
interaction between PP1 and the IRBIT domain [27]. It also prevents
the subsequent CK1-mediated phosphorylation of S71 and S74, and
hence the activation of the IRBIT domain. Inversely, inactivation of the
PP1 docking site increases the interaction of IRBIT with the IP3R [27].
The protein phosphatase(s) that dephosphorylate(s) S71 and S74

remain(s) elusive. It is also still unknown whether IRBIT-bound PP1
can affect the phosphorylation state of the IP3R.

The importance of the phosphorylation sites on the IRBIT domain
is underscored by the fact that IRBIT can in vivo be cleaved inside the
PEST domain, between the two CK1-dependent phosphorylation sites
(Fig. 2) [24,27]. This proteolytic cleavage represents an irreversible
way to inactivate the IRBIT domain, as neither IRBIT[1-73] nor IRBIT
[74-530] can bind to the IP3R [24]. Inactivation of IRBIT by proteolytic
cleavage and subsequent removal of the endogenous attenuation of
IP3-induced Ca2+ release (IICR) could therefore play a role in death-
signaling pathways [32].

3.3. Phosphorylated IRBIT inhibits the IP3R

When IRBIT is phosphorylated on S71 and S74, it can bind to the
IP3R [27]. Both IRBIT and IP3 bind to largely overlapping sites in the
N-terminal region of the IP3R [24,28]. Their binding sites are however
not completely identical: mutation of R265 or T267 in the IP3R disables
the binding of IP3, but not of IRBIT [28]. Additionally, the suppressor
domain of the IP3R may be involved in the binding of IRBIT [24]
(Fig.1). Binding experiments demonstrated that phosphorylated IRBIT,
purified from Sf9 cells, has a ∼10-fold lower affinity for the IP3R than
IP3 (IC50 ∼250 nM versus ∼26 nM) [24] which is however still
significantly higher than the affinity of other regulatory proteins
interacting with the IP3R as e.g. calmodulin (CaM; IC50 ∼2 μM [33,34]).

Though both IRBIT and IP3 interact with the IP3-binding core, the
former is unable to activate the IP3R channel [28]. Moreover, binding
of phosphorylated IRBIT competes with the IP3 needed for activating
the IP3R and for subsequent IICR [27]. This explains why phosphory-
lated IRBIT reduces IICR in permeabilized fibroblasts and why this
effect can be overcome at high IP3 concentrations [24]. Similar results
were also observed in mouse cerebellar microsomes but overexpres-
sion of IRBIT appeared not to affect IICR in intact HeLa cells [28]. This
could be due to high endogenous levels of IRBIT and/or of its close
homologue AHCYL2. Inversely, silencing of IRBIT increased the
number of HeLa cells that responded to low levels of IP3 [28].

Overall, the functional in vivo role of IRBIT on the IP3R remains
puzzling and the observed effects are disappointingly small. This
could point to an additional cellular regulatory mechanism that
controls its activity. In this respect, it should be noted that pH could be
an important regulator of the interaction of the IRBIT domain with its
targets. We observed that an increase in pH decreases IRBIT binding to
the IP3R, while it increases the binding of IP3 [24]. Competition
between IRBIT and IP3 is therefore extremely dependent on intracel-
lular pH. Hence, it is possible that in vivo effects of IRBIT on the IP3R
can only be clearly observed in conditions of a (locally) decreased
intracellular pH. As IRBIT also targets Na+/HCO3

- cotransporters [35] it
might constitute a link between intracellular pH regulation and Ca2+

signaling [22].

4. The anti-apoptotic Bcl-2 protein and its role in regulating the
phosphorylation status of IP3R

4.1. Structure and function of Bcl-2

Bcl-2 (B-cell lymphoma-2) is the prototype of a large family of pro-
apoptotic and anti-apoptotic proteins, characterized by one or more
specific domains, called Bcl-2 homology (BH) domains. Bcl-2 contains
four BH domains and appears embedded in the ER, nuclear envelope
and outer mitochondrial membrane via its hydrophobic C-terminal
tail [36]. Bcl-2 as well as other anti-apoptotic members of the Bcl-2
family, such as Bcl-Xl, can inhibit the multidomain pro-apoptotic
Bcl-2-family members Bax and Bak that lack the BH4 domain.
Activated Bax and Bak normally translocate to the mitochondria and
oligomerize, thereby leading to mitochondrial outer-membrane
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permeabilization and cytochrome-c release, and ultimately to cell
blebbing and removal. In addition, the hydrophobic groove formed
by BH domains 1–3 in as well the anti-apoptotic Bcl-2/Bcl-Xl as the
pro-apoptotic Bax/Bak can bind the amphipatic BH3 domain of the
so-called BH3-only pro-apoptotic proteins [36].

Besides this role at the level of the mitochondrial outer membrane,
many Bcl-2-family members seem to play a crucial role in controlling
the Ca2+ content of the ER and/or the Ca2+ release from it [37].
Although it is still not clear how regulation of intracellular Ca2+

homeostasis by the anti-apoptotic Bcl-2-family members is exactly
achieved, it is clear that IP3Rs hereby play a central role [38]. Recent
evidence demonstrated a binding site for Bcl-2 in the regulatory
region of the IP3R (Fig. 1) [39], while previous evidence indicated that
the related protein Bcl-Xl would bind in the C-terminal region [40].
Both Bcl-2 and Bcl-Xl seem to be able to interact with all three IP3R
isoforms [40,41], though isoform-specific effects have been described,
at least for Bcl-Xl [42]. The exact relation between the various IP3R
isoforms, Bcl-2/Bcl-Xl and their proposed binding sites remains
however to be further investigated. Interestingly, the anti-apoptotic
Bcl-2-family members display a dual role on Ca2+ signaling. At low
levels of cellular activation Bcl-2 and Bcl-Xl seem in lymphocytes so
to enhance pro-survival Ca2+ oscillations, thereby stimulating depho-
sphorylation of the nuclear factor of activated T cells (NFAT) and
mitochondrial bioenergetics, whereas they would inhibit pro-apopto-
tic sustained Ca2+ elevations, thereby preventing mitochondrial
outer-membrane permeabilization [40,43]. For more detailed infor-
mation on the action of Bcl-2 and Bcl-Xl on the IP3R, the interested
reader is referred to very recent reviews on the topic [44–46].

4.2. Regulation of the phosphorylation status of Bcl-2 and IP3R1 by Bcl-2

Bcl-2's activity has been shown to be dependent on its phosphor-
ylation state. In cells, Bcl-2 phosphorylation is induced in response to
diverse stimuli including chemotherapeutic taxanes, survival factor or
protein kinase C (PKC) [47]. In addition, it has been shown that Bcl-2 is
phosphorylated in a cyclin-dependent kinase (CDK) 1-dependent
manner in hypericin-photosensitized HeLa cells [48]. Phosphorylation
of Bcl-2 induces cell-cycle arrest in G2/M and leads to apoptotic
removal. Phosphorylation occurs in the unstructured loop region
between BH4 and BH3 and seems generally related to inactivation of
Bcl-2, since deletion of this loop or mutation of these phosphorylated
sites enhances the anti-apoptotic properties of Bcl-2 [49–53]. In
cycling Jurkat cells, Bcl-2 is phosphorylated by Jun N-terminal kinases
(JNK) during the G2/M cell cycle at T69, S70 and S87 [54]. Mutation in
Bcl-2 of these 3 amino acids to alanine (Bcl-2AAA) enhanced protection
against Ca2+-dependent death stimuli, such as arachidonic acid and
H2O2. In addition, overexpression of Bcl-2AAA in mouse embryonic
fibroblasts was more potent in reducing the ER Ca2+ levels and
inhibiting mitochondrial Ca2+ uptake than overexpression of wild-
type Bcl-2. This indicates that phosphorylation of Bcl-2 can inactivate
its anti-apoptotic action and reverse its effects on ER Ca2+ dynamics.
This was recently confirmed in epithelial cells, where JNK1 activation
occurs through Gα12, leading to Bcl-2 phosphorylation, degradation
and ultimately apoptosis [55]. Dephosphorylation of Bcl-2 is mediated
by different phosphatases, including PP1, PP2A and calcineurin (also
named PP2B) with which Bcl-2 seems to be able to directly interact.

Calcineurin interacts with the BH4 domain of Bcl-2 in various cell
types [56,57]. Subsequently, a Ca2+- and CaM-dependent interaction
of calcineurin was demonstrated with both Bcl-2 and IP3R1 in various
regions of the brain [58]. Moreover, as Bcl-2 seems to be required for
the calcineurin-IP3R1 interaction, it was proposed that Bcl-2 acts as a
docking protein for calcineurin on IP3R1 [59,60]. Calcineurin could
then dephosphorylate both Bcl-2 and IP3R1 and so contribute to Bcl-
2's anti-apoptotic functions [59].

A Bcl-2-dependent interaction of calcineurin with the IP3R may
help resolve the long standing problem how calcineurin targets the
IP3R. Indeed, the original claim that calcineurin regulates IICR after
being targeted to the IP3R1 by FK506-binding protein (FKBP) 12
[61,62] is in contradictionwith subsequent results obtained by various
other groups [63-67]. Potential explanations for the effects of
calcineurin on IICR have already been presented elsewhere [68].
Efficient dephosphorylation of the IP3R by calcineurin might however
also occur if the latter is targeted to the IP3R by another docking
protein as e.g. Bcl-2.

Bcl-2 has also been shown to directly interact with PP1 through a
RVXF motif present in the BH1 domain of Bcl-2 (a.a. 146–150) [69].
This study provided evidence that Bcl-2 can bind through PP1 to IP3Rs,
since siRNA-mediated knockdown of PP1 reduced the interaction
between Bcl-2 and IP3R1. Moreover, the authors suggested that IP3R1
and Bcl-2 competed for PP1 and that titrating Bcl-2 away by Bad
overexpression may increase the availability of PP1 for IP3R1 and may
induce increased IICR and apoptosis. This mechanism allows for an
indirect effect of Bcl-2 on IICR but would however imply that
dephosphorylation of IP3Rs activates the channel, whereas IP3R
channels are in most cases activated by phosphorylation (see part 5
and following). This interesting possibility for additional regulation
should therefore be further investigated.

Recently, Bcl-2 was shown to also co-immunoprecipitate with
PP2A from ER membranes [70]. Dephosphorylation of Bcl-2 appar-
ently regulates Bcl-2 levels in a dynamic way: inhibition of PP2A led to
degradation of phosphorylated Bcl-2 and a decrease in total Bcl-2
levels, whereas an increase in PP2A levels caused stabilization of
endogenous Bcl-2 levels. Hence, PP2A-mediated dephosphorylation
can protect Bcl-2 from proteasome-dependent degradation and
therefore modulate cellular sensitivity towards ER-stress stimuli.

Finally, another study demonstrated that in the absence of Bax/Bak
(i) Bcl-2 binding to IP3R1 was strongly enhanced, and (ii) IP3R1 was
hyperphosphorylated [71]. At least part of the hyperphosphorylation
was due to phosphorylation of S1755, a site that can be used by either
protein kinase A (PKA) or protein kinase G (PKG) (see parts 5 and
6). At the functional level, this hyperphosphorylation correlated
with an increased rate of Ca2+ leak from the ER and a lower steady-
state [Ca2+]ER. This effect could be abolished by siRNA-mediated
silencing of either Bcl-2 or IP3R1, but not of IP3R3, indicating a
specific effect of Bcl-2 on IP3R1 [71].

Taken together these results suggest that the ratio of pro- and anti-
apoptotic Bcl-2-family members specifically determines the phos-
phorylation status of IP3R1. Although Bcl-2 can bind different types of
phosphatases, no conclusive mechanism can be proposed to explain
how this effect is mediated.

5. Regulation of the IP3R by protein kinase A

The concept that the IP3R can be regulated by PKA is extremely
appealing, as it provides a possibility for cross-talk between the two
main intracellular messengers, cAMP and Ca2+. Differences in the
levels of bothmessengers and in the intracellular densities of IP3Rs and
PKA could in this way allow for the initiation of specific Ca2+ signals
[72]. A specific example of such a regulation can be found in the brain
where the distribution and subcellular localization of phosphorylated
versus unphosphorylated IP3R1 vary markedly between brain regions
and depend on the physiological condition [73].

In line with this, PKA-mediated phosphorylation of IP3R1 appears
very robust. In fact, this phosphorylation event was already demon-
strated in cerebellum before the identification of the phosphoprotein
as the IP3R [74-78]. In spite of this early detection, the exact functional
consequence of this phosphorylation remained for a long time
controversial. This controversy may be due to the fact that multiple
proteins directly or indirectly related to Ca2+ handlingmay also be the
target of phosphorylation by PKA. Alternatively, it may be due to the
fact that PKA-mediated phosphorylation itself is under regulatory
control. Such regulation may involve a preliminary phosphorylation
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by another kinase as was proposed for platelets. In those cells it
appeared that the PKA-mediated inhibition of IICR only occurred
when IP3R1 was already phosphorylated by a yet unidentified
endogenous kinase [79]. Also regulation by ATP can be involved: the
peripheral IP3R1 isoform contains an additional nucleotide-binding
fold which seems to be unrelated to the ATP-dependent regulation of
the IP3R1 [80]. A mutation inside this fold (G1690A) however
precluded both the PKA-dependent phosphorylation of the receptor
and the subsequent potentiation of the IICR, suggesting a relation
between ATP binding and PKA-mediated sensitization of IP3R1.

PKA can phosphorylate two distinct sites on IP3R1 (S1588 and S1755,
see Fig. 1), both located in the regulatory region of the receptor and
separated by the S2 splice domain that is typically present in the adult
neuronal IP3R1 isoform [81]. In this isoform, the primary phosphor-
ylation site appears to be S1755. Splicing out of the insert affects the
phosphorylation process as the peripheral IP3R isoform appears about
five-fold more sensitive to PKA and is predominantly phosphorylated
at S1588 [82]. Targeting of PKA to both the neuronal and the peripheral
IP3R1 isoforms is mediated by the anchor protein AKAP9 (also named
yotiao) which interacts with a non-canonical leucine/isoleucine
zipper domain in the regulatory region of the IP3R1 (a.a. 1251–
1287, see Fig. 1) [31]. In chromaffin cells, the epidermal growth
factor receptor forms also part of the signaling complex, which
would be recruited after stimulation by bradykinin [83].

Although it was originally proposed that the IP3R was inhibited
after phosphorylation by PKA, model systems relying on immunopur-
ified IP3R1 reconstituted in lipid vesicles [84] or single-channel
measurements in planar lipid bilayers [30] conclusively demonstrated
that PKA-mediated phosphorylation leads to a direct increase in the
sensitivity of IP3R1 towards IP3 without shifting its Ca2+ sensitivity.

Similar conclusions were drawn from analysis of Ca2+ signals in
IP3R DT-40 triple knock-out cells heterologously expressing IP3R1.
Mutation analysis of the neuronal and peripheral isoforms of IP3R1
indicated that phosphorylation of S1755 was crucial for increasing the
sensitivity of the neuronal isoformwhile both S1589 and S1755 had to be
phosphorylated to increase the sensitivity of the peripheral isoform
[85,86]. Phosphomimetic mutations in IP3Rs expressed in DT-40 cells
moreover indicate that PKA-mediated phosphorylation lowers the
threshold for Ca2+ oscillations, but does not affect their amplitude or
frequency [86]. A detailed electrophysiological analysis of the IP3R1
(peripheral isoform) in the same cell type indicated that the main
effect of PKA-mediated phosphorylation was to decrease the prob-
ability of the IP3R1 to reside in the closed state and so to increase the
likelihood of extending burst activity and thus Ca2+ release [87].

PKA-mediated phosphorylation and activation of IP3R1 is counter-
acted by PP1α [30]. Interestingly, the C-terminus of IP3R1 can bind
PP1α but not the β and γ isoforms and none of the PP1 isoforms
shows significant binding to the C-termini of IP3R2 and -3, indicating a
very specific interaction [30]. As IP3R1 can also bind PP1 indirectly via
AKAP9 [31] or via associated proteins as IRBIT or Bcl-2 (see parts 3 and
4 resp., Fig. 1) it remains to be clarified which PP1-binding site(s) is
(are) functional in vivo.

PKA-mediated phosphorylation cannot only affect IICR in a direct
way, but might also indirectly affect the IP3R by modulating its
interaction with other regulatory factors. At least for the peripheral
IP3R1 isoform, PKA-mediated phosphorylation attenuates CaM bind-
ing to it [88]. This effect was related to the phosphorylation of the
upstream PKA site and counteracted by PP1 [89]. The decreased
binding of CaMmay help to explain the increase in IICR observed after
PKA-mediated phosphorylation. In addition, it might explain why in
some other studies no PKA-mediated increase in IICR was observed, as
depending of the cell type and the technique used, different levels of
CaM may be present.

The potentiating effect of PKA on IICR was also observed in studies
on tissues or cell types in which IP3R1 is not the main isoform (e.g. in
hepatocytes), though the presence of homomeric or heterotetrameric
IP3R1 in those cells does not allow to make conclusions on the effects
of PKA on the other isoforms. As the above-mentioned residues of
IP3R1 phosphorylated by PKA are not conserved between the
isoforms, differences in action of PKA can be expected. It also appears
that although the leucine/isoleucine zipper region is conserved in
IP3R2 and -3, AKAP9 failed to bind to these isoforms [31].

Comparison of the three immunoprecipitated isoforms already
indicated that phosphorylation was much less effective for IP3R2 and
-3 than for IP3R1 [90]. Effects of PKA-mediated phosphorylation on
specifically the IP3R2 and -3 isoformswere therefore only investigated
in a limited number of studies.

For IP3R2 in parotid cells, evidence was presented for its PKA-
mediated phosphorylation, which correlated with an increased Ca2+-
release activity [91]. A detailed study in the pancreatic AR4-2J cell line
that expresses for 86% IP3R2 came to the same conclusions [92]
suggesting that IP3R2 is phosphorylated and activated by PKA.

For IP3R3, like for IP3R1, contradictory results were published. At
the one hand a PKA-mediated inhibition of IICR was demonstrated in
parotid and pancreatic acinar cells [93–95]. In RINm5F insulinoma
cells expressing high levels of IP3R3 however a PKA-mediated
activation of IICR was observed by different groups [90,96,97]. Three
PKA-dependent phosphorylation sites were identified in IP3R3, i.e.
S916, S934, and S1832, whereby S934 was the preferential phosphoryla-
tion site [98]. The relation between phosphorylation of these serine
residues and changes in IP3R3 activity is however not clear. In DT-40
cells PKA inhibited IICR after either B-cell-receptor (BCR) stimulation
or activation of the protease receptor PAR2, irrespectively whether
wild-type IP3R3 or IP3R3 mutated at one or several of the above-
mentioned serine residues were expressed [99]. This observation
indicates that the phosphorylated serine residues may not directly
affect IP3R3-channel function but may contribute to the scaffolding
role of IP3Rs and/or that another PKA substrate is involved in the
inhibitory effect on IICR, and this in a cell-type dependent way.

6. Regulation of the IP3R by protein kinase G

PKG has a high homology to PKA but a muchmore restricted tissue
distribution, with highest level in the lung, cerebellum and smooth
muscle [100]. In the latter two tissues it was demonstrated that IP3R1
could be phosphorylated by PKG [101-103]. The phosphorylation
event is however less pronounced than with PKA and was initially
missed. PKG phosphorylated the same sites on IP3R1 as PKA (Fig. 1)
[85,101,104], though the site preferentially used seems not only to be
dependent on the splice isoform but also on the phosphorylation
conditions [105].

In smooth muscle, IP3R1 and PKG are found in a multiprotein
complex also containing a protein called IRAG for “IP3R-associated
cGMP kinase substrate” [106]. The latter is a relatively large protein
(125 kDa) that links IP3R1 to specifically the Iβ isoform of PKG. The
formation of this complex does not depend on the phosphorylation of
IRAG but when itself phosphorylated on S696, IRAG leads to
diminished IICR [107].

Similarly to PKA, both stimulatory [108] and inhibitory actions
[109,110] on IICRwere described. Thismight be related to the presence
or absence of IRAG [107]. Another complication for the interpretation
of the results is that, at least under some conditions, cAMP can lead to
PKG-mediated phosphorylation [103,104], while cGMP can also
induce an IP3R-independent Ca2+ release [111].

Concerning the other IP3R isoforms, much less is known. A modest
phosphorylation by PKG was observed for IP3R3, at the same site
(S934) that is predominantly used by PKA for this isoform [98].

7. Regulation of the IP3R by Ca2+/CaM-dependent protein kinase II

CaMKII belongs to a different type of kinase, and exists as an
assembly of 8–12monomers which is found in most tissues, though in
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neurons at a particularly high concentration [112]. As CaMKII is
sensitive to Ca2+ and CaM and has the ability to decode Ca2+

oscillations [112], regulation of IICR by CaMKII would constitute an
obvious feedback mechanism whereby Ca2+ would regulate its own
release.

Ca2+ has since long been recognized as a basic feedback regulator
of the IP3R and of the subsequent IICR (reviewed in [3,113-116]). The
regulation by Ca2+ is biphasic, with activation in the sub-micromolar
range and an inhibition at higher Ca2+ concentrations. Ca2+ activation
has been consistently found in different cell types as well as in in vitro
reconstitution systems, e.g. in bilayer experiments, suggesting that the
determinants of the activation are probably intrinsic features of the
IP3R. On the other hand, the inhibition is highly variable, depending on
IP3R subtype, cell type and experimental conditions [3]. This can be
interpreted as a result of different types of Ca2+-dependent regulation
including regulation of the IP3R via Ca2+/CaM and via Ca2+/CaM-
dependent phosphorylation [117]. As IRBIT is also a substrate for
CaMKII (see part 3) an additional mechanism involving CaMKII would
be that the phosphorylation of IRBIT forms part of the negative
feedback mechanism.

In many studies Ca2+ was found to mediate its effects via Ca2+-
sensor proteins and particularly via CaM and the broad family of CaM-
like Ca2+ sensors. CaM so interacts with all three IP3R isoforms [115].
The existence of multiple sites for CaM interaction on IP3R1 has been
documented [34,88,118–120]. Inhibitory effects of CaM on IICR have
been demonstrated by various groups and under various conditions
121–124]. More recently evidencewas presented that additionally one
of the CaM-binding sites might lead to IP3R stimulation [120], though
this latter mechanism is the matter of some debate [125]. In addition,
CaM can act through activation of the multifunctional CaMKII and
phosphorylation of IP3R1 by CaMKII was already reported early on
[78,126].

Up to now, precise identification and location of CaMKII phosphor-
ylation sites on the IP3R have not been reported. Depending on the
stringency of the definition of the consensus motif multiple potential
sites are possible. The R-X-X-[S/T]motif [127] is found between 11 and
19 times, depending on the isoform [128]. Screening for a consensus
site L-X-R-X-X-[S/T] shared by several types of CaM-dependent
kinases [129] yields however only 1 to 3 sites on each isoform, but
they are not conserved in an isoform- or species-dependent way.

The role of CaMKII-mediated phosphorylation has been implicated
from functional observations using inhibitors such as KN-62 [130].
CaMKII was proposed to be involved in the control of the Ca2+-
dependent regulation of IICR [131–133] and in the occurrence of Ca2+

oscillations [134–136]. In the latter study the inhibitory effect of
CaMKII on IICR could be discriminated from CaMKII effects on IP3
3-kinase [137,138]. The effects of CaMKII were also demonstrated
using more specific CaMKII peptide inhibitors [136], which is
important as e.g. the CaMKII inhibitor KN-93 was found to directly
inhibit IP3R1 by binding to a CaM-binding site [139].

Co-distribution of CaMKII and IP3R3 was reported in tissues of the
gastrointestinal tract [140], but the most extensive information
concerning regulation by CaMKII was obtained for IP3R2, the
predominant IP3R isoform in cardiac ventricular myocytes [141].
CaMKIIδB was found to co-localize with IP3R2 in the nuclear envelope
and to interact with and phosphorylate IP3R2 within the 1-1078 N-
terminal region [141]. The phosphorylation significantly decreased the
open probability of IP3R2 in lipid bilayers and it was suggested that
IP3R2 and CaMKIIδB may represent a signaling complex with negative
feedback on IP3R2 function in the myocyte nuclear envelope [141,142].
Such a negative feedback resulting from inhibition of IP3R activity by
CaMKII may be the cause of the effects of CaMKII on Ca2+ oscillations
[134], neurotransmitter release [143] and on transcription-factor
translocation between cytoplasm and nucleus [144]. It is well
established that neuronal activity regulates gene expression via
intracellular Ca2+ and downstream Ca2+-sensitive enzymes [145]. In
this respect it is relevant that IP3R expression as well as splice
selection in cerebellum granule neurons was found to be modulated
by Ca2+/CaM-dependent kinases (particularly CaMKIV), thus pro-
moting the expression of a distinct splice isoform in these cells [146].

8. Regulation of the IP3R by protein kinase C (PKC)

PKC belongs together with PKA/PKG and protein kinase B (PKB) to
the so-called ABC kinases which have a conserved kinase core under
allosterical control of a regulatory moiety. Based on the properties of
the latter, the PKCs are usually further divided into three subfamilies,
the conventional, the novel and the atypical PKCs [147]. The
conventional PKCs (α, β and γ) depend for their activity on Ca2+

and diacylglycerol (DAG), which both increase after cell stimulation
and subsequent PLC activation. Regulation of the IP3R by PKC would
therefore constitute a potential feedbackmechanism. In that respect it
is interesting to note that both the G-protein coupled receptors and
PLC itself are also under feedback control of PKC [148]. It should be
noted that PKC activation leads to changes in the subcellular
localization of IP3Rs in various cell types, which may reflect on their
function [149,150]. It is however not known whether the IP3R itself is
phosphorylated during this process. Finally, it is important to realize
that the various PKC isoforms can affect Ca2+ signaling differently
[151,152].

Purified and reconstituted neuronal IP3R1 can be phosphorylated
in vitro by brain PKC [126]. The phosphorylation site is different from
the PKA phosphorylation sites but is still unidentified. The general
consensus motif for PKC is [R/K]-X-[S/T]-X-[R/K] [153]. This motif can
be found between 3 and 6 times, depending on the IP3R isoform [128].
Evidence suggests that the phosphorylation of IP3R1 by PKC is
specifically counteracted by the phosphatase calcineurin [61]. Calci-
neurin potentially interacts with the IP3R1 through another protein,
but as stated above in part 4, the identity of the docking protein, if any,
is still unknown. In addition, recent results indicate that the potential
docking protein FKBP12 not only could affect IICR via calcineurin but
also by inhibition of the mammalian target of rapamycin (mTOR), an
S/T protein kinase related to the phosphoinositol kinases that can
potentiate IICR in smooth muscle [67]. It is however not known
whether mTOR acts directly on the IP3R or whether the effect is
mediated by another kinase as PKC or CDK.

Interaction of PKC with its substrates can either be direct or be
mediated by a scaffold protein, the receptor for activated C kinase
(RACK) 1. It is therefore possible that PKC itself forms part of a
multiprotein complex with the IP3R [18]. Interestingly, RACK1
interacts with the IP3R (Fig. 1), but no evidence was yet presented
that it played a role in the anchoring of PKC to the IP3R [154].

Functional effects of PKC-mediated phosphorylation of the IP3R
were first demonstrated in isolated rat liver nuclei where Ca2+ release
through the IP3R was augmented after PKC activation [155]. When
calcineurin is inhibited or when the interaction of calcineurin with
IP3R1 is disturbed by e.g. FK506 [61,156,157], PKC-mediated phos-
phorylation of IP3R1 is enhanced in vivo as is IICR, suggesting that
phosphorylation of the IP3R by PKC leads to increased Ca2+ release.

Furthermore, PKC-mediated phosphorylation of IP3R1 can in vitro
be regulated by PKA, Ca2+ and CaM [158]. As both Ca2+ and CaM
inhibit the PKC-mediated phosphorylation of IP3R1, it is possible that
this process may contribute to the negative slope of the Ca2+-
dependent bell-shaped regulation of IP3Rs by Ca2+ (see part 7).

The group of Guillemette recently investigated the role of PKC-
mediated phosphorylation of IP3R2 [159] and -3 [160]. It seems that
when IP3R2 or -3 is phosphorylated by PKC, IICR is decreased in cells
expressing almost exclusively those isoforms. In this case PKC is
functioning as a negative regulator of intracellular Ca2+ release. This
difference in the effect of PKC phosphorylation on IICR between IP3R1
and the other isoforms is not unexpected as they possess different
potential phosphorylation sites [128,160] and it is still neither known
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which sites are used nor which are subject to further regulatory
mechanisms. At least under in vitro conditions, phosphorylation of
IP3R3 by PKC is unaffected by Ca2+ or CaM [158].

9. Regulation of the IP3R by protein kinase B

PKB (also called Akt) also belongs to the family of the ABC kinases.
Three highly homologous isoforms (α, β, γ) are expressed in
mammalian cells, all playing crucial functions in the processes of cell
proliferation and cell survival [161,162]. As it is known that high levels
of Ca2+ release can promote apoptosis [38,44,163], it is conceivable
that PKB could have pro-survival effects by suppressing IICR.

All three IP3R isoforms have an R-X-R-X-X-[S/T] consensus site for
PKB, which is located in their C-terminal tail (for IP3R1 this is S2681, see
Fig. 1). PKB phosphorylates the IP3R in vitro and in vivo at this site, but
a difference in IP3R properties could at first not be shown, although in
cells expressing a non-phosphorylatable IP3R1 mutant caspase
activation was stimulated after treatment with staurosporine [164].
This result is provocative and strongly suggests that PKB regulates in
some way either Ca2+ release itself, e.g. by affecting IP3-independent
Ca2+ release through the channel portion of the IP3R [165], or else
interferes with the ER to mitochondria Ca2+-transfer process [164].
Interestingly, a subsequent study indicated that PKB interacted
between a.a. 2431 and 2749 of the IP3R1 (Fig. 1), confirmed the
phosphorylation by PKB of S2681, but also demonstrated an inhibitory
effect on IICR occurring simultaneously with a reduced sensitivity to
apoptosis in various cell types [166]. The latter results are also in line
with a more recent study investigating Ca2+ homeostasis in HeLa cells
[167]. The reasons for the discrepancy in the effect on IICR between
the first study and the latter two is not clear, but might be related to
the cell types used: the low endogenous PKB activity in chicken
DT-40 B-lymphocytes [166] may have obscured the effects.

10. Regulation of the IP3R by cell cycle-dependent protein kinases

The cell cycle is a complex process exquisitely regulated by
successive phosphorylation and dephosphorylation and where var-
ious protein kinases play a role. Important kinases hereby are the
various CDKs, extracellular-signal regulated kinases (ERK) and polo-
like kinases (PLK) [168–170].

Awell-studied cellular system is the (mammalian) oocyte where it
was shown that the activity of all these kinases changes during the
processes of oocyte maturation and egg activation [171–173]. More-
over, in those oocytes the capacity of releasing Ca2+ through the IP3R
increases during maturation, reaching an optimal activity at the time
of fertilization [174]. After fertilization a single, large Ca2+ transient is
initiated, followed by Ca2+ oscillations that last several hours, and that
disappear at interphase in a pattern which might be related to the
changes in kinase activity [175–177]. Changes in IP3R activity do not
only occur in oocytes but also in somatic cells when progressing
through mitotic divisions [178]. It therefore was a legitimate question
to investigate whether the IP3R is under direct control of cell cycle-
dependent protein kinases.

CDK1 (also called cdc2 for cell division cycle 2) assembles with the
regulatory protein cyclin B to form the maturation-promoting factor,
which is important for the start of oocyte maturation. It phosphor-
ylates substrates at an [S/T]-P-X-[K/R] consensus motif [179]. The
IP3R1 contains two phosphorylation sites for CDK, S421 and T799, which
both can be phosphorylated in vitro and in vivo by CDK1/cyclin B
(Fig. 1) [180]. S421 is conserved in IP3R1 from Drosophila to human
but not in IP3R2 or -3; T799 on the other hand is conserved in both
IP3R1 and -3. Moreover, R391, R441, and R871, each located in an RXL
cyclin-binding motif, are essential for allowing the coupling of CDK1/
cyclin B to the IP3R1 (Fig. 1) [181]. Both cyclin A and B were also
shown to interact with IP3R3, but the binding sites were not yet
identified [182]. CDK1/cyclin B-mediated phosphorylation of IP3R1,
especially at T799, resulted in a 3-fold increase in IP3-binding activity
and also in an increased IICR activity [180,181].

The MAP kinases ERK1 and ERK2 are cell cycle-dependent kinases
that phosphorylate an [S/T]-Pmotif, with P-X-[S/T]-P as optimal motif
[179]. In mouse IP3R1 there are 3 potential ERK1/2 phosphorylation
sites: S436, T945 and S1765. From those only S436 and T945 are conserved
between mammals and Xenopus and S436 is also conserved in
Drosophila. None of them however are conserved in IP3R2 or -3. In
addition, the docking motif for MAP kinases, a short sequence called
the D domain, is found in mouse IP3R1 (a.a. 2078–2087, see Fig. 1),
suggesting a role for IP3R1 downstream of ERK1/2 activation. In vitro,
mouse cerebellar ERK1/2 interacts with this D-domain and two of the
three potential sites on IP3R1 (S436 and S1765, see Fig. 1) are
phosphorylated by ERK2 [183]. In agreement with the fact that
those phosphorylation sites are not conserved between the various
IP3R isoforms, in vitro experiments on purified IP3R1 and -3
demonstrated that only the former could be phosphorylated by
ERK2 and suggested S436 to be the major phosphorylation site [184].

Also in agreement with the preceding, functional effects were yet
only demonstrated for ERK-mediated phosphorylation of S436. Inter-
estingly, this residue is located in the hinge (a.a. 435–437) between
the two parts of the IP3-binding core, the β-trefoil and the α domain
with the armadillo repeats [4]. This critical location can explain why
upon phosphorylation of S436 by ERK the binding of the suppressor
domain to the IP3-binding core is strengthened while IP3 binding is
decreased. A decreased IICR was hereby observed [183,185].

In oocytes, a cell model expressing predominantly IP3R1 [186], the
reactivity of IP3R1 with the mitotic protein monoclonal 2 (MPM2)
antibody recognizing a [pS/pT]-P epitope [187], correlated well with
ERK activity: theMPM2 phosphorylation of the IP3R1 increases during
oocyte maturation, is maximal at MII and decreases again after
fertilization [184]. Pharmacological inhibition of the upstream kinase
MEK by U0126 demonstrated that ERK was responsible for this MPM2
reactivity of IP3R1. When ERK activity was inhibited, Ca2+ oscillations
were also impaired, indicating a stimulatory effect of ERK on IICR,
which is different from the effects described in somatic cells [183,185].
However this stimulation by ERK might be indirect, e.g. by regulating
the relative subcellular localization of the IP3R1 to that of another
MPM2-generating kinase [184,188].

Moreover, at early stages of maturation the MPM2 reactivity of
IP3R1 was not abolished in the presence of U0126, suggesting that
another kinase is then phosphorylating the IP3R1 at anMPM2-reactive
epitope [188]. A possible candidate for this is PLK1 [189]. PLK1
phosphorylates proteins on the consensus sequence [E/D]-X-[S/T]-Φ-
X-[D/E] (Φ indicates any hydrophobic a.a.) [190]. There are in IP3R1
three serines or threonines located in such consensus sites: T1048, S1790

and T2656. The latter site is very well conserved, as well across species
as across the various isoforms. In contrast herewith T1048 and S1790 is
conserved from Xenopus to humans in IP3R1 but are not conserved in
IP3R2 and -3. Both IP3R1 and -3 are in vitro phosphorylated by PLK1
(unpublished data). More importantly, we demonstrated that PLK1 is
indeed the kinase responsible for the MPM2 reactivity of the IP3R1 in
mouse oocytes in vivo [188]. These results therefore strongly suggest
an important role for PLK1 in the regulation of IICR during oocyte
maturation. Its mechanism of action has however still to be resolved.

11. Regulation of the IP3R by Rho kinases

Binding of hyaluronan to the plasma-membrane protein CD44
promotes adhesion, proliferation and migration of endothelial cells
and these processes aremediated by monomeric GTPases as RhoA and
the subsequent activation of Rho kinase. Aortic endothelial cells
express the three IP3R isoforms but after hyaluronan binding, Rho
kinase-mediated phosphorylation was predominantly observed for
IP3R1, and only to a much lesser extent for IP3R2 and -3 [191].
Functionally an increased IP3 binding and an increased IICR were
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observed, which were related to endothelial-cell migration. The
process however appears much more complicated and other path-
ways, including IP3 production, tyrosine kinases and interaction with
cytoskeletal proteins, may all contribute to the increased IICR.

12. Regulation of the IP3R by tyrosine kinases

The mammalian non-receptor tyrosine kinases are divided in 10
families, of which the largest is the Src family containing 8 members
[192]. At least 3 members of this family were described to
phosphorylate the IP3R, though it is not yet clear whether they all
act in a similar way.

The first demonstration of phosphorylation of tyrosine residues of
the IP3R1 was obtained during T-cell activation [193]. Subsequent
experiments indicated that both Src and Fyn could in vitro
phosphorylate IP3R1 in brain and in T-lymphocytes [194]. Although
Fyn can probably phosphorylate more than one site on IP3R1, most of
the phosphorylation occurs at a single site, Y353, located in the β-
trefoil domain of the IP3-binding core, just downstream of the S1
splice site (Fig. 1) [195]. Moreover, it is this site that is specifically
phosphorylated after T-cell or B-cell stimulation, suggesting its
importance during these processes.

In T-lymphocytes, the interaction of the major histocompatibility
complex II loadedwith antigens with the T-cell receptor (TCR) leads to
a cascade of events. One of the early steps is the activation of several
non-receptor tyrosine kinases, leading to phosphorylation of the TCR
and activation of PLCγ1. At that moment a colocalization of IP3R1 and
activated TCR occurs [196]. This colocalization is in fact the reflection
of the formation of a larger macromolecular complex, as both Fyn
[194] and the scaffold protein LAT, both positive regulators of PLCγ1
[197], associate with the IP3R. Moreover, this clustering of the IP3R1 at
the side of TCR activation does not represent a general ER
reorganization, but a specific movement of IP3R1 [197]. Whether
there is any mechanistic relation between IP3R1 phosphorylation and
its redistribution is here again not yet known.

Functional experiments confirm that Fyn-mediated phosphoryla-
tion of IP3R1 is important for T-cell activation. It leads to a 5-fold
increase in affinity for IP3 [195,197] as well as to a sensitization of the
channel, even at concentrations of Ca2+ that are normally inhibitory
[194,197], which means that IP3R1 continues to release Ca2+ during
the phase of declining [IP3] and of sustained [Ca2+] elevation
associated with T-cell activation [195], allowing for continuous
store-operated Ca2+ entry and NFAT activation.

In contrast with the more widely expressed Src and Fyn, Lyn
belongs to a subfamily of Src that is expressed only in hematopoietic
cells, and a deficiency in Lyn is characterized by a reduction in B-cell
development and activity [192]. After crosslinking of the BCR by
antigen binding, a phosphorylation cascade is initiated which begins
with Lyn phosphorylating the BCR as well as other proteins. In the
cascade PLCγ2 is activated and IP3 is produced. Proteins that are
phosphorylated by Lyn appear to be IP3R1 and -2 [198]. Their
phosphorylation site is not yet identified, but the interaction of Lyn
with the IP3R and the subsequent phosphorylation of the latter is
mediated by a scaffold protein named BANK, which is itself also
phosphorylated in the process. BANK can interact through its N-
terminal domain (a.a. 1–154) to the IP3R, while a more C-terminally
located part (a.a. 367–653) is involved in its interaction with Lyn.
Physiologically, BANK does not lead to an upregulation of PLCγ2
activity, but, probably by mediating IP3R phosphorylation by Lyn,
enhances Ca2+ signaling in a process reminiscent, but not identical, to
the relation between Fyn, LAT and IP3R in T cells.

13. Conclusion and perspectives

The importance of phosphorylation/dephosphorylation in the
regulation of IICR is very much dependent on the cellular context.
Many different kinases can phosphorylate the IP3R, but IP3R isoform-
specific differences occur with respect to the presence of phosphor-
ylation sites as well as of docking sites for the different protein kinases
and phosphatases. Moreover, it became clear that the formation of
multiprotein complexes, whereby regulatory proteins associating
with the IP3R are themselves both substrates for kinases and
phosphatases and scaffold proteins allowing the proximity of kinases
and phosphatases towards the IP3R, is important for the localized
regulation of Ca2+ signals.

Although most effort has been directed to identify the kinases
involved, it is also increasingly evident that protein phosphatases are
very much involved in such multiprotein complexes. To understand
the function of IICR in defined cellular conditions and/or in subcellular
microdomains it will therefore be crucial to further determine which
scaffolding and docking proteins are coupling kinases and phospha-
tases to the different IP3R isoforms.

Acknowledgments

We acknowledge Elke Vermassen (K. U. Leuven), Rafael A. Fissore
(Univ. Massachusetts) and ClarkW. Distelhorst (CaseWestern Reserve
Univ.) for the stimulating discussions. Work performed in the
laboratory on present topic was supported by grants from the NIH,
the Concerted Actions of the K. U. Leuven, the Interuniversity
Attraction Pole program of the Belgian Government and the Research
Foundation Flanders. The authors apologize for the excellent papers
that were not cited, due to place constraints.

References

[1] M.J. Berridge, Inositol trisphosphate and calcium signalling, Nature 361 (1993)
315–325.

[2] M.J. Berridge, P. Lipp, M.D. Bootman, The versatility and universality of calcium
signalling, Nat. Rev. Mol Cell. Biol. 1 (2000) 11–21.

[3] J.K. Foskett, C. White, K.H. Cheung, D.O. Mak, Inositol trisphosphate receptor Ca2
+ release channels, Physiol. Rev. 87 (2007) 593–658.

[4] I. Bosanac, T. Michikawa, K. Mikoshiba, M. Ikura, Structural insights into the regu-
latory mechanism of IP3 receptor, Biochim. Biophys. Acta 1742 (2004) 89–102.

[5] T. Miyakawa, A. Maeda, T. Yamazawa, K. Hirose, T. Kurosaki, M. Iino, Encoding of
Ca2+ signals by differential expression of IP3 receptor subtypes, EMBO J. 18
(1999) 1303–1308.

[6] S. Vanlingen, H. Sipma, P. De Smet, G. Callewaert, L. Missiaen, H. De Smedt, J.B.
Parys, Ca2+ and calmodulin differentially modulate myo-inositol 1,4,5-trispho-
sphate (IP3)-binding to the recombinant ligand-binding domains of the various
IP3 receptor isoforms, Biochem. J. 346 (2000) 275–280.

[7] M. Iwai, T. Michikawa, I. Bosanac, M. Ikura, K. Mikoshiba, Molecular basis of the
isoform-specific ligand-binding affinity of inositol 1,4,5-trisphosphate receptors,
J. Biol. Chem. 282 (2007) 12755–12764.

[8] L. Missiaen, H. De Smedt, J.B. Parys, I. Sienaert, S. Vanlingen, R. Casteels, Threshold
for inositol 1,4,5-trisphosphate action, J. Biol. Chem. 271 (1996) 12287–12293.

[9] K. Maes, L. Missiaen, P. De Smet, S. Vanlingen, G. Callewaert, J.B. Parys, H. De
Smedt, Differential modulation of inositol 1,4,5-trisphosphate receptor type 1
and type 3 by ATP, Cell Calcium 27 (2000) 257–267.

[10] K. Maes, L. Missiaen, J.B. Parys, P. De Smet, I. Sienaert, E. Waelkens, G. Callewaert,
H. De Smedt, Mapping of the ATP-binding sites on inositol 1,4,5-trisphosphate
receptor type 1 and type 3 homotetramers by controlled proteolysis and
photoaffinity labeling, J. Biol. Chem. 276 (2001) 3492–3497.

[11] D.O. Mak, S. McBride, J.K. Foskett, Regulation by Ca2+ and inositol 1,4,5-
trisphosphate (InsP3) of single recombinant type 3 InsP3 receptor channels.
Ca2+ activation uniquely distinguishes types 1 and 3 InsP3 receptors, J. Gen.
Physiol. 117 (2001) 435–446.

[12] S. Vanlingen, H. Sipma, P. De Smet, G. Callewaert, L. Missiaen, H. De Smedt, J.B.
Parys, Modulation of inositol 1,4,5-trisphosphate binding to the various inositol
1,4,5-trisphosphate receptor isoforms by thimerosal and cyclic ADP-ribose,
Biochem. Pharmacol. 61 (2001) 803–809.

[13] H. Tu, Z. Wang, I. Bezprozvanny, Modulation of mammalian inositol 1,4,5-
trisphosphate receptor isoforms by calcium: a role of calcium sensor region,
Biophys. J. 88 (2005) 1056–1069.

[14] H. Tu, Z. Wang, E. Nosyreva, H. De Smedt, I. Bezprozvanny, Functional
characterization of mammalian inositol 1,4,5-trisphosphate receptor isoforms,
Biophys. J. 88 (2005) 1046–1055.

[15] M.J. Betzenhauser, L.E. Wagner II, M. Iwai, T. Michikawa, K. Mikoshiba, D.I. Yule,
ATP modulation of Ca2+ release by type-2 and type-3 InsP3R: Differing ATP
sensitivities and molecular determinants of action, J. Biol. Chem. 283 (2008)
21579–21587.

[16] C. Sato, K. Hamada, T. Ogura, A. Miyazawa, K. Iwasaki, Y. Hiroaki, K. Tani, A.
Terauchi, Y. Fujiyoshi, K. Mikoshiba, Inositol 1,4,5-trisphosphate receptor



967V. Vanderheyden et al. / Biochimica et Biophysica Acta 1793 (2009) 959–970
contains multiple cavities and L-shaped ligand-binding domains, J. Mol. Biol. 336
(2004) 155–164.

[17] K. Hamada, T. Miyata, K. Mayanagi, J. Hirota, K. Mikoshiba, Two-state
conformational changes in inositol 1,4,5-trisphosphate receptor regulated by
calcium, J. Biol. Chem. 277 (2002) 21115–21118.

[18] R.L. Patterson, D. Boehning, S.H. Snyder, Inositol 1,4,5-trisphosphate receptors as
signal integrators, Annu. Rev. Biochem. 73 (2004) 437–465.

[19] I. Bezprozvanny, The inositol 1,4,5-trisphosphate receptors, Cell Calcium 38
(2005) 261–272.

[20] E. Vermassen, J.B. Parys, J.P. Mauger, Subcellular distribution of the inositol 1,4,5-
trisphosphate receptors: functional relevance and molecular determinants, Biol.
Cell 96 (2004) 3–17.

[21] H. Ando, A. Mizutani, T. Matsu-ura, K. Mikoshiba, IRBIT, a novel inositol 1,4,5-
trisphosphate (IP3) receptor-binding protein, is released from the IP3 receptor
upon IP3 binding to the receptor, J. Biol. Chem. 278 (2003) 10602–10612.

[22] B. Devogelaere, E. Sammels, H. De Smedt, The IRBIT domain adds new functions
to the AHCY family, Bioessays 30 (2008) 642–652.

[23] T. Gomi, F. Takusagawa, M. Nishizawa, B. Agussalim, I. Usui, E. Sugiyama, H. Taki,
K. Shinoda, H. Hounoki, T. Miwa, K. Tobe, M. Kobayashi, T. Ishimoto, H. Ogawa,
H. Mori, Cloning, bacterial expression, and unique structure of adenosylhomo-
cysteine hydrolase-like protein 1, or inositol 1,4,5-triphosphate receptor-
binding protein from mouse kidney, Biochim. Biophys. Acta 1784 (2008)
1786–1794.

[24] B. Devogelaere, N. Nadif Kasri, R. Derua, E. Waelkens, G. Callewaert, L. Missiaen,
J.B. Parys, H. De Smedt, Binding of IRBIT to the IP3 receptor: determinants and
functional effects, Biochem. Biophys. Res. Commun. 343 (2006) 49–56.

[25] R. Ashworth, B. Devogelaere, J. Fabes, R.E. Tunwell, K.R. Koh, H. De Smedt, S. Patel,
Molecular and functional characterization of inositol trisphosphate receptors
during early zebrafish development, J. Biol. Chem. 282 (2007) 13984–13993.

[26] B.J. Cooper, B. Key, A. Carter, N.Z. Angel, D.N. Hart, M. Kato, Suppression and
overexpression of adenosylhomocysteine hydrolase-like protein 1 (AHCYL1)
influences zebrafish embryo development: a possible role for AHCYL1 in inositol
phospholipid signaling, J. Biol. Chem. 281 (2006) 22471–22484.

[27] B. Devogelaere, M. Beullens, E. Sammels, R. Derua, E. Waelkens, J. Van Lint, J.B.
Parys, L. Missiaen, M. Bollen, H. De Smedt, Protein phosphatase-1 is a novel
regulator of the interaction between IRBIT and the inositol 1,4,5-trisphosphate
receptor, Biochem. J. 407 (2007) 303–311.

[28] H. Ando, A. Mizutani, H. Kiefer, D. Tsuzurugi, T. Michikawa, K. Mikoshiba, IRBIT
suppresses IP3 receptor activity by competing with IP3 for the common binding
site on the IP3 receptor, Mol. Cell 22 (2006) 795–806.

[29] M.O. Collins, L. Yu, M.P. Coba, H. Husi, I. Campuzano, W.P. Blackstock, J.S.
Choudhary, S.G. Grant, Proteomic analysis of in vivo phosphorylated synaptic
proteins, J. Biol. Chem. 280 (2005) 5972–5982.

[30] T.S. Tang, H. Tu, Z. Wang, I. Bezprozvanny, Modulation of type 1 inositol (1,4,5)-
trisphosphate receptor function by protein kinase A and protein phosphatase 1α,
J. Neurosci. 23 (2003) 403–415.

[31] H. Tu, T.S. Tang, Z. Wang, I. Bezprozvanny, Association of type 1 inositol 1,4,5-
trisphosphate receptor with AKAP9 (Yotiao) and protein kinase A, J. Biol. Chem.
279 (2004) 19375–19382.

[32] L. Verbert, B. Devogelaere, J.B. Parys, L. Missiaen, G. Bultynck, H. De Smedt,
Proteolytic mechanisms leading to disturbed Ca2+ signalling in apoptotic cell
death, Calcium Binding Proteins 2 (2007) 21–29.

[33] H. Sipma, P. De Smet, I. Sienaert, S. Vanlingen, L. Missiaen, J.B. Parys, H. De Smedt,
Modulation of inositol 1,4,5-trisphosphate binding to the recombinant ligand-
binding site of the type-1 inositol 1,4,5-trisphosphate receptor by Ca2+ and
calmodulin, J. Biol. Chem. 274 (1999) 12157–12162.

[34] I. Sienaert, N. Nadif Kasri, S. Vanlingen, J.B. Parys, G. Callewaert, L. Missiaen, H. De
Smedt, Localization and function of a calmodulin-apocalmodulin-binding
domain in the N-terminal part of the type 1 inositol 1,4,5-trisphosphate receptor,
Biochem. J. 365 (2002) 269–277.

[35] K. Shirakabe, G. Priori, H. Yamada, H. Ando, S. Horita, T. Fujita, I. Fujimoto, A.
Mizutani, G. Seki, K. Mikoshiba, IRBIT, an inositol 1,4,5-trisphosphate receptor-
binding protein, specifically binds to and activates pancreas-type Na+/HCO3

-

cotransporter 1 (pNBC1), Proc. Natl. Acad. Sci. USA 103 (2006) 9542–9547.
[36] R.J. Youle, A. Strasser, The BCL-2 protein family: opposing activities that mediate

cell death, Nat. Rev. Mol. Cell Biol. 9 (2008) 47–59.
[37] S.A. Oakes, S.S. Lin, M.C. Bassik, The control of endoplasmic reticulum-

initiated apoptosis by the BCL-2 family of proteins, Curr. Mol. Med. 6 (2006)
99–109.

[38] S.K. Joseph, G. Hajnoczky, IP3 receptors in cell survival and apoptosis: Ca2+

release and beyond, Apoptosis 12 (2007) 951–968.
[39] Y.P. Rong, A.S. Aromolaran, G. Bultynck, F. Zhong, X. Li, K. McColl, S. Matsuyama, S.

Herlitze, H.L. Roderick, M.D. Bootman, G.A. Mignery, J.B. Parys, H. De Smedt, C.W.
Distelhorst, Targeting Bcl-2-IP3 receptor interaction to reverse Bcl-2's inhibition
of apoptotic calcium signals, Mol. Cell 31 (2008) 255–265.

[40] C. White, C. Li, J. Yang, N.B. Petrenko, M. Madesh, C.B. Thompson, J.K. Foskett, The
endoplasmic reticulum gateway to apoptosis by Bcl-XL modulation of the InsP3R,
Nat. Cell Biol. 7 (2005) 1021–1028.

[41] R. Chen, I. Valencia, F. Zhong, K.S. McColl, H.L. Roderick, M.D. Bootman, M.J.
Berridge, S.J. Conway, A.B. Holmes, G.A. Mignery, P. Velez, C.W. Distelhorst, Bcl-2
functionally interacts with inositol 1,4,5-trisphosphate receptors to regulate
calcium release from the ER in response to inositol 1,4,5-trisphosphate, J. Cell
Biol. 166 (2004) 193–203.

[42] C. Li, X. Wang, H. Vais, C.B. Thompson, J.K. Foskett, C. White, Apoptosis regulation
by Bcl-xL modulation of mammalian inositol 1,4,5-trisphosphate receptor
channel isoform gating, Proc. Natl. Acad. Sci. USA 104 (2007) 12565–12570.
[43] F. Zhong, M.C. Davis, K.S. McColl, C.W. Distelhorst, Bcl-2 differentially regulates
Ca2+ signals according to the strength of T cell receptor activation, J. Cell Biol. 172
(2006) 127–137.

[44] Y.P. Rong, C.W. Distelhorst, Bcl-2 protein family members: versatile regulators of
calcium signaling in cell survival and apoptosis, Annu. Rev. Physiol. 70 (2008)
73–91.

[45] P. Pinton, C. Giorgi, R. Siviero, E. Zecchini, R. Rizzuto, Calcium and apoptosis: ER-
mitochondria Ca2+ transfer in the control of apoptosis, Oncogene 27 (2008)
6407–6418.

[46] Y.P. Rong, P. Barr, V.C. Yee, C.W. Distelhorst, Targeting Bcl-2 based on the inter-
action of its BH4 domain with the inositol 1,4,5-trisphosphate receptor, Biochim.
Biophys. Acta 1793 (2009) 971–978.

[47] A. Basu, G. DuBois, S. Haldar, Posttranslational modifications of Bcl2 family
members - a potential therapeutic target for human malignancy, Front. Biosci. 11
(2006) 1508–1521.

[48] A. Vantieghem, Y. Xu, Z. Assefa, J. Piette, J.R. Vandenheede, W. Merlevede, P.A.
de Witte, P. Agostinis, Phosphorylation of Bcl-2 in G2/M phase-arrested cells
following photodynamic therapy with hypericin involves a CDK1-mediated
signal and delays the onset of apoptosis, J. Biol. Chem. 277 (2002) 37718–37731.

[49] B.S. Chang, A.J. Minn, S.W.Muchmore, S.W. Fesik, C.B. Thompson, Identification of
a novel regulatory domain in Bcl-XL and Bcl-2, EMBO J. 16 (1997) 968–977.

[50] S. Haldar, A. Basu, C.M. Croce, Serine-70 is one of the critical sites for drug-
induced Bcl2 phosphorylation in cancer cells, Cancer Res. 58 (1998) 1609–1615.

[51] R.K. Srivastava, Q.S. Mi, J.M. Hardwick, D.L. Longo, Deletion of the loop region of
Bcl-2 completely blocks paclitaxel-induced apoptosis, Proc. Natl. Acad. Sci. USA
96 (1999) 3775–3780.

[52] K. Yamamoto, H. Ichijo, S.J. Korsmeyer, BCL-2 is phosphorylated and inactivated
by an ASK1/Jun N-terminal protein kinase pathway normally activated at G(2)/
M, Mol. Cell. Biol. 19 (1999) 8469–8478.

[53] M. Shitashige, M. Toi, T. Yano, M. Shibata, Y. Matsuo, F. Shibasaki, Dissociation of
Bax from a Bcl-2/Bax heterodimer triggered by phosphorylation of serine 70 of
Bcl-2, J. Biochem. 130 (2001) 741–748.

[54] M.C. Bassik, L. Scorrano, S.A. Oakes, T. Pozzan, S.J. Korsmeyer, Phosphorylation of
BCL-2 regulates ER Ca2+ homeostasis and apoptosis, EMBO J. 23 (2004)
1207–1216.

[55] V. Yanamadala, H. Negoro, L. Gunaratnam, T. Kong, B.M. Denker, Gα12 stimulates
apoptosis in epithelial cells through JNK1-mediated Bcl-2 degradation and up-
regulation of IκBα, J. Biol. Chem. 282 (2007) 24352–24363.

[56] F. Shibasaki, E. Kondo, T. Akagi, F. McKeon, Suppression of signalling through
transcription factor NF-AT by interactions between calcineurin and Bcl-2, Nature
386 (1997) 728–731.

[57] R.K. Srivastava, C.Y. Sasaki, J.M. Hardwick, D.L. Longo, Bcl-2-mediated drug
resistance: inhibition of apoptosis by blocking nuclear factor of activated T
lymphocytes (NFAT)-induced Fas ligand transcription, J. Exp. Med. 190 (1999)
253–265.

[58] N. Erin, S.K. Bronson, M.L. Billingsley, Calcium-dependent interaction of
calcineurin with Bcl-2 in neuronal tissue, Neuroscience 117 (2003) 541–555.

[59] N. Erin, R.A. Lehman, P.J. Boyer, M.L. Billingsley, In vitro hypoxia and excitotoxicity
in human brain induce calcineurin-Bcl-2 interactions, Neuroscience 117 (2003)
557–565.

[60] N. Erin, M.L. Billingsley, Domoic acid enhances Bcl-2-calcineurin-inositol-1,4,5-
trisphosphate receptor interactions and delayed neuronal death in rat brain
slices, Brain Res. 1014 (2004) 45–52.

[61] A.M. Cameron, J.P. Steiner, A.J. Roskams, S.M. Ali, G.V. Ronnett, S.H. Snyder,
Calcineurin associated with the inositol 1,4,5-trisphosphate receptor-FKBP12
complex modulates Ca2+ flux, Cell 83 (1995) 463–472.

[62] A.M. Cameron, F.C. Nucifora, E.T. Fung, D.J. Livingston, R.A. Aldape, C.A. Ross, S.H.
Snyder, FKBP12 binds the inositol 1,4,5-trisphosphate receptor at leucine-proline
(1400–1401) and anchors calcineurin to this FK506-like domain, J. Biol. Chem.
272 (1997) 27582–27588.

[63] S. Kanoh, M. Kondo, J. Tamaoki, H. Shirakawa, K. Aoshiba, S. Miyazaki, H.
Kobayashi, N. Nagata, A. Nagai, Effect of FK506 on ATP-induced intracellular
calcium oscillations in cow tracheal epithelium, Am. J. Physiol. 276 (1999)
L891–L899.

[64] G. Bultynck, P. De Smet, A.F. Weidema, M. Ver Heyen, K. Maes, G. Callewaert, L.
Missiaen, J.B. Parys, H. De Smedt, Effects of the immunosuppressant FK506 on
intracellular Ca2+ release and Ca2+ accumulationmechanisms, J. Physiol. (Lond.)
525 (2000) 681–693.

[65] G. Bultynck, P. De Smet, D. Rossi, G. Callewaert, L. Missiaen, V. Sorrentino, H.
De Smedt, J.B. Parys, Characterization and mapping of the 12 kDa FK506-
binding protein (FKBP12)-binding site on different isoforms of the ryanodine
receptor and of the inositol 1,4,5-trisphosphate receptor, Biochem. J. 354
(2001) 413–422.

[66] M. Carmody, J.J. Mackrill, V. Sorrentino, C. O’Neill, FKBP12 associates tightly with
the skeletal muscle type 1 ryanodine receptor, but not with other intracellular
calcium release channels, FEBS Lett. 505 (2001) 97–102.

[67] D. MacMillan, S. Currie, K.N. Bradley, T.C. Muir, J.G. McCarron, In smooth muscle,
FK506-binding protein modulates IP3 receptor-evoked Ca2+ release by mTOR
and calcineurin, J. Cell Sci. 118 (2005) 5443–5451.

[68] G. Bultynck, E. Vermassen, K. Szlufcik, P. De Smet, R.A. Fissore, G. Callewaert, L.
Missiaen, H. De Smedt, J.B. Parys, Calcineurin and intracellular Ca2+-release
channels: regulation or association? Biochem. Biophys. Res. Commun. 311
(2003) 1181–1193.

[69] L. Xu, D. Kong, L. Zhu, W. Zhu, D.W. Andrews, T.H. Kuo, Suppression of IP3-
mediated calcium release and apoptosis by Bcl-2 involves the participation of
protein phosphatase 1, Mol. Cell. Biochem. 295 (2007) 153–165.



968 V. Vanderheyden et al. / Biochimica et Biophysica Acta 1793 (2009) 959–970
[70] S.S. Lin, M.C. Bassik, H. Suh, M. Nishino, J.D. Arroyo, W.C. Hahn, S.J. Korsmeyer,
T.M. Roberts, PP2A regulates BCL-2 phosphorylation and proteasome-mediated
degradation at the endoplasmic reticulum, J. Biol. Chem. 281 (2006)
23003–23012.

[71] S.A. Oakes, L. Scorrano, J.T. Opferman, M.C. Bassik, M. Nishino, T. Pozzan, S.J.
Korsmeyer, Proapoptotic BAX and BAK regulate the type 1 inositol trisphosphate
receptor and calcium leak from the endoplasmic reticulum, Proc. Natl. Acad. Sci.
USA 102 (2005) 105–110.

[72] A.E. Bugrim, Regulation of Ca2+ release by cAMP-dependent protein kinase. A
mechanism for agonist-specific calcium signaling? Cell Calcium 25 (1999)
219–226.

[73] A.A. Pieper, D.J. Brat, E. O'Hearn, D.K. Krug, A.I. Kaplin, K. Takahashi, J.H.
Greenberg, D. Ginty, M.E. Molliver, S.H. Snyder, Differential neuronal localizations
and dynamics of phosphorylated and unphosphorylated type 1 inositol 1,4,5-
trisphosphate receptors, Neuroscience 102 (2001) 433–444.

[74] S.I. Walaas, A.C. Nairn, P. Greengard, Regional distribution of calcium- and cyclic
adenosine 3':5'-monophosphate-regulated protein phosphorylation systems in
mammalian brain. I. Particulate systems, J. Neurosci. 3 (1983) 291–301.

[75] K. Mikoshiba, H. Okano, Y. Tsukada, P400 protein characteristic to Purkinje cells
and related proteins in cerebella from neuropathological mutant mice:
autoradiographic study by 14C-leucine and phosphorylation, Dev. Neurosci. 7
(1985) 179–187.

[76] S.I. Walaas, A.C. Nairn, P. Greengard, PCPP-260, a Purkinje cell-specific cyclic AMP-
regulated membrane phosphoprotein of Mr 260,000, J. Neurosci. 6 (1986)
954–961.

[77] S. Supattapone, S.K. Danoff, A. Theibert, S.K. Joseph, J. Steiner, S.H. Snyder, Cyclic
AMP-dependent phosphorylation of a brain inositol trisphosphate receptor
decreases its release of calcium, Proc. Natl. Acad. Sci. USA 85 (1988) 8747–8750.

[78] H. Yamamoto, N. Maeda, M. Niinobe, E. Miyamoto, K. Mikoshiba, Phosphorylation
of P400 protein by cyclic AMP-dependent protein kinase and Ca2+/calmodulin-
dependent protein kinase II, J. Neurochem. 53 (1989) 917–923.

[79] T.M. Quinton, K.D. Brown,W.L. Dean, Inositol 1,4,5-trisphosphate-mediated Ca2+

release from platelet internal membranes is regulated by differential phosphor-
ylation, Biochemistry 35 (1996) 6865–6871.

[80] L.E. Wagner II, M.J. Betzenhauser, D.I. Yule, ATP binding to a unique site in the
type-1 S2- inositol 1,4,5-trisphosphate receptor defines susceptibility to
phosphorylation by protein kinase A, J. Biol. Chem. 281 (2006) 17410–17419.

[81] C.D. Ferris, A.M. Cameron, D.S. Bredt, R.L. Huganir, S.H. Snyder, Inositol 1,4,5-
trisphosphate receptor is phosphorylated by cyclic AMP-dependent protein
kinase at serines 1755 and 1589, Biochem. Biophys. Res. Commun. 175 (1991)
192–198.

[82] S.K. Danoff, C.D. Ferris, C. Donath, G.A. Fischer, S. Munemitsu, A. Ullrich, S.H.
Snyder, C.A. Ross, Inositol 1,4,5-trisphosphate receptors: distinct neuronal and
nonneuronal forms derived by alternative splicing differ in phosphorylation,
Proc. Natl. Acad. Sci. USA 88 (1991) 2951–2955.

[83] E.M. Hur, Y.S. Park, Y.H. Huh, S.H. Yoo, K.C. Woo, B.H. Choi, K.T. Kim, Junctional
membrane inositol 1,4,5-trisphosphate receptor complex coordinates sensitiza-
tion of the silent EGF-induced Ca2+ signaling, J. Cell Biol. 169 (2005) 657–667.

[84] S. Nakade, S.K. Rhee, H. Hamanaka, K. Mikoshiba, Cyclic AMP-dependent
phosphorylation of an immunoaffinity-purified homotetrameric inositol 1,4,5-
trisphosphate receptor (type I) increases Ca2+ flux in reconstituted lipid vesicles,
J. Biol. Chem. 269 (1994) 6735–6742.

[85] L.E. Wagner II, W.H. Li, D.I. Yule, Phosphorylation of type-1 inositol 1,4,5-
trisphosphate receptors by cyclic nucleotide-dependent protein kinases: a
mutational analysis of the functionally important sites in the S2+ and S2- splice
variants, J. Biol. Chem. 278 (2003) 45811–45817.

[86] L.E. Wagner II, W.H. Li, S.K. Joseph, D.I. Yule, Functional consequences of
phosphomimetic mutations at key cAMP-dependent protein kinase phosphor-
ylation sites in the type 1 inositol 1,4,5-trisphosphate receptor, J. Biol. Chem. 279
(2004) 46242–46252.

[87] L.E. Wagner, S.K. Joseph, D.I. Yule, Regulation of single inositol 1,4,5-trispho-
sphate receptor channel activity by protein kinase A phosphorylation, J. Physiol.
(Lond.) 586 (2008) 3577–3596.

[88] C. Lin, J. Widjaja, S.K. Joseph, The interaction of calmodulin with alternatively
spliced isoforms of the type-I inositol trisphosphate receptor, J. Biol. Chem. 275
(2000) 2305–2311.

[89] D.J. Jang, M. Guo, D. Wang, Proteomic and biochemical studies of calcium- and
phosphorylation-dependent calmodulin complexes in mammalian cells, J.
Proteome Res. 6 (2007) 3718–3728.

[90] R.J. Wojcikiewicz, S.G. Luo, Phosphorylation of inositol 1,4,5-trisphosphate
receptors by cAMP-dependent protein kinase. Type I, II, and III receptors are
differentially susceptible to phosphorylation and are phosphorylated in intact
cells, J. Biol. Chem. 273 (1998) 5670–5677.

[91] J.I. Bruce, T.J. Shuttleworth, D.R. Giovannucci, D.I. Yule, Phosphorylation of inositol
1,4,5-trisphosphate receptors in parotid acinar cells. A mechanism for the
synergistic effects of cAMP onCa2+ signaling, J. Biol. Chem. 277 (2002) 1340–1348.

[92] Y. Regimbald-Dumas, G. Arguin, M.O. Fregeau, G. Guillemette, cAMP-dependent
protein kinase enhances inositol 1,4,5-trisphosphate-induced Ca2+ release in
AR4–2J cells, J. Cell. Biochem. 101 (2007) 609–618.

[93] A.P. LeBeau, D.I. Yule, G.E. Groblewski, J. Sneyd, Agonist-dependent phosphor-
ylation of the inositol 1,4,5-trisphosphate receptor: A possible mechanism for
agonist-specific calcium oscillations in pancreatic acinar cells, J. Gen. Physiol. 113
(1999) 851–872.

[94] D.R. Giovannucci, G.E. Groblewski, J. Sneyd, D.I. Yule, Targeted phosphorylation of
inositol 1,4,5-trisphosphate receptors selectively inhibits localized Ca2+ release
and shapes oscillatory Ca2+ signals, J. Biol. Chem. 275 (2000) 33704–33711.
[95] S.V. Straub, D.R. Giovannucci, J.I. Bruce, D.I. Yule, A role for phosphorylation of
inositol 1,4,5-trisphosphate receptors in defining calcium signals induced by
peptide agonists in pancreatic acinar cells, J. Biol. Chem. 277 (2002)
31949–31956.

[96] J.L. Dyer, H. Mobasheri, E.J. Lea, A.P. Dawson, F. Michelangeli, Differential effect of
PKA on the Ca2+ release kinetics of the type I and III InsP3 receptors, Biochem.
Biophys. Res. Commun. 302 (2003) 121–126.

[97] B. Chaloux, A.Z. Caron, G. Guillemette, Protein kinase A increases the binding
affinity and the Ca2+ release activity of the inositol 1,4,5-trisphosphate receptor
type 3 in RINm5F cells, Biol. Cell 99 (2007) 379–388.

[98] M.D. Soulsby, R.J. Wojcikiewicz, The type III inositol 1,4,5-trisphosphate receptor
is phosphorylated by cAMP-dependent protein kinase at three sites, Biochem. J.
392 (2005) 493–497.

[99] M.D. Soulsby, R.J. Wojcikiewicz, Calcium mobilization via type III inositol 1,4,5-
trisphosphate receptors is not altered by PKA-mediated phosphorylation of
serines 916, 934, and 1832, Cell Calcium 42 (2007) 261–270.

[100] J.D. Scott, Cyclic nucleotide-dependent protein kinases, Pharmacol. Ther. 50
(1991) 123–145.

[101] P. Komalavilas, T.M. Lincoln, Phosphorylation of the inositol 1,4,5-trisphosphate
receptor by cyclic GMP-dependent protein kinase, J. Biol. Chem. 269 (1994)
8701–8707.

[102] T. Koga, Y. Yoshida, J.Q. Cai, M.O. Islam, S. Imai, Purification and characterization
of 240-kDa cGMP-dependent protein kinase substrate of vascular smooth
muscle. Close resemblance to inositol 1,4,5-trisphosphate receptor, J. Biol.
Chem. 269 (1994) 11640–11647.

[103] P. Komalavilas, T.M. Lincoln, Phosphorylation of the inositol 1,4,5-trisphosphate
receptor. Cyclic GMP-dependent protein kinase mediates cAMP and cGMP
dependent phosphorylation in the intact rat aorta, J. Biol. Chem. 271 (1996)
21933–21938.

[104] K.S. Murthy, H. Zhou, Selective phosphorylation of the IP3R-I in vivo by cGMP-
dependent protein kinase in smooth muscle, Am. J. Physiol. 284 (2003)
G221–G230.

[105] L.S. Haug, V. Jensen, O. Hvalby, S.I. Walaas, A.C. Ostvold, Phosphorylation of the
inositol 1,4,5-trisphosphate receptor by cyclic nucleotide-dependent kinases in
vitro and in rat cerebellar slices in situ, J. Biol. Chem. 274 (1999) 7467–7473.

[106] J. Schlossmann, A. Ammendola, K. Ashman, X. Zong, A. Huber, G. Neubauer, G.X.
Wang, H.D. Allescher, M. Korth, M. Wilm, F. Hofmann, P. Ruth, Regulation of
intracellular calcium by a signalling complex of IRAG, IP3 receptor and cGMP
kinase Iβ, Nature 404 (2000) 197–201.

[107] A. Ammendola, A. Geiselhoringer, F. Hofmann, J. Schlossmann, Molecular
determinants of the interaction between the inositol 1,4,5-trisphosphate
receptor-associated cGMP kinase substrate (IRAG) and cGMP kinase Iβ, J. Biol.
Chem. 276 (2001) 24153–24159.

[108] G. Guihard, L. Combettes, T. Capiod, 3':5'-cyclic guanosine monophosphate
(cGMP) potentiates the inositol 1,4,5-trisphosphate-evoked Ca2+ release in
guinea-pig hepatocytes, Biochem. J. 318 (1996) 849–855.

[109] K.S. Murthy, cAMP inhibits IP3-dependent Ca2+ release by preferential activation
of cGMP-primed PKG, Am. J. Physiol. 281 (2001) G1238–G1245.

[110] S. Tertyshnikova, X. Yan, A. Fein, cGMP inhibits IP3-induced Ca2+ release in intact
rat megakaryocytes via cGMP- and cAMP-dependent protein kinases, J. Physiol.
(Lond.) 512 (1998) 89–96.

[111] K.S. Murthy, G.M. Makhlouf, cGMP-mediated Ca2+ release from IP3-insensitive
Ca2+ stores in smooth muscle, Am. J. Physiol. 274 (1998) C1199–C1205.

[112] A. Hudmon, H. Schulman, Structure-function of the multifunctional Ca2+/
calmodulin-dependent protein kinase II, Biochem. J. 364 (2002) 593–611.

[113] J.B. Parys, I. Sienaert, S. Vanlingen, G. Callewaert, P. De Smet, L. Missiaen, H.
De Smedt, Regulation of inositol 1,4,5-trisphosphate-induced Ca2+ release by
Ca2+, in: R. Pochet, R. Donato, J. Haiech, C.W. Heizmann, V. Gerke (Eds.),
Calcium: the molecular basis of calcium action in biology and medicine,
Kluwer Academic Publishers, Dordrecht, 2000, pp. 179–190.

[114] C. Taylor, A. Laude, IP3 receptors and their regulation by calmodulin and cytosolic
Ca2+, Cell Calcium 32 (2002) 321–334.

[115] N. Nadif Kasri, G. Bultynck, I. Sienaert, G. Callewaert, C. Erneux, L. Missiaen, J.B.
Parys, H. De Smedt, The role of calmodulin for inositol 1,4,5-trisphosphate
receptor function, Biochim. Biophys. Acta 1600 (2002) 19–31.

[116] J.K. Foskett, D.O. Mak, Novel model of calcium and inositol 1,4,5-trisphosphate
regulation of InsP3 receptor channel gating in native endoplasmic reticulum, Biol.
Res. 37 (2004) 513–519.

[117] J.B. Parys, L. Missiaen, H. De Smedt, I. Sienaert, R. Casteels, Mechanisms responsible
for quantal Ca2+ release from inositol trisphosphate-sensitive calcium stores,
Pflugers Arch. 432 (1996) 359–367.

[118] M. Yamada, A. Miyawaki, K. Saito, T. Nakajima, M. Yamamoto Hino, Y. Ryo, T.
Furuichi, K. Mikoshiba, The calmodulin-binding domain in the mouse type 1
inositol 1,4,5-trisphosphate receptor, Biochem. J. 308 (1995) 83–88.

[119] T.J. Cardy, C.W. Taylor, A novel role for calmodulin: Ca2+-independent inhibition
of type-1 inositol trisphosphate receptors, Biochem. J. 334 (1998) 447–455.

[120] N.N. Kasri, K. Török, A. Galione, C. Garnham, G. Callewaert, L. Missiaen, J.B. Parys,
H. De Smedt, Endogenously bound calmodulin is essential for the function of the
inositol 1,4,5-trisphosphate receptor, J. Biol. Chem. 281 (2006) 8332–8338.

[121] L. Missiaen, J.B. Parys, A.F. Weidema, H. Sipma, S. Vanlingen, P. De Smet, G.
Callewaert, H. De Smedt, The bell-shaped Ca2+ dependence of the inositol 1,4,5-
trisphosphate-induced Ca2+ release is modulated by Ca2+/calmodulin, J. Biol.
Chem. 274 (1999) 13748–13751.

[122] T. Michikawa, J. Hirota, S. Kawano, M. Hiraoka, M. Yamada, T. Furuichi, K.
Mikoshiba, Calmodulin mediates calcium-dependent inactivation of the cere-
bellar type 1 inositol 1,4,5-trisphosphate receptor, Neuron 23 (1999) 799–808.



969V. Vanderheyden et al. / Biochimica et Biophysica Acta 1793 (2009) 959–970
[123] C.E. Adkins, S.A. Morris, H. De Smedt, I. Sienaert, K. Török, C.W. Taylor, Ca2+-
calmodulin inhibits Ca2+ release mediated by type-1, -2 and -3 inositol
trisphosphate receptors, Biochem. J. 345 (2000) 357–363.

[124] L. Missiaen, H. De Smedt, G. Bultynck, S. Vanlingen, P. De Smet, G. Callewaert, J.B.
Parys, Calmodulin increases the sensitivity of type 3 inositol-1,4, 5-trisphosphate
receptors to Ca2+ inhibition in human bronchial mucosal cells, Mol. Pharmacol.
57 (2000) 564–567.

[125] Y. Sun, C.W. Taylor, A calmodulin antagonist reveals a calmodulin-independent
interdomain interaction essential for activation of inositol 1,4,5-trisphosphate
receptors, Biochem. J. 416 (2008) 243–253.

[126] C.D. Ferris, R.L. Huganir, D.S. Bredt, A.M. Cameron, S.H. Snyder, Inositol
trisphosphate receptor: phosphorylation by protein kinase C and calcium
calmodulin-dependent protein kinases in reconstituted lipid vesicles, Proc.
Natl. Acad. Sci. USA 88 (1991) 2232–2235.

[127] R.J. Colbran, C.M. Schworer, Y. Hashimoto, Y.L. Fong, D.P. Rich, M.K. Smith, T.R.
Soderling, Calcium/calmodulin-dependent protein kinase II, Biochem. J. 258
(1989) 313–325.

[128] S. Patel, S.K. Joseph, A.P. Thomas, Molecular properties of inositol 1,4,5-
trisphosphate receptors, Cell Calcium 25 (1999) 247–264.

[129] H. Doppler, P. Storz, J. Li, M.J. Comb, A. Toker, A phosphorylation state-specific
antibody recognizes Hsp27, a novel substrate of protein kinase D, J. Biol. Chem.
280 (2005) 15013–15019.

[130] M. Tohda, J. Nakamura, H. Hidaka, Y. Nomura, Inhibitory effects of KN-62, a
specific inhibitor of Ca/calmodulin-dependent protein kinase II, on serotonin-
evoked Cl- current and 36Cl- efflux in Xenopus oocytes, Neurosci. Lett. 129 (1991)
47–50.

[131] B.X. Zhang, H. Zhao, S. Muallem, Ca2+-dependent kinase and phosphatase
control inositol 1,4,5-trisphosphate-mediated Ca2+ release. Modification by
agonist stimulation, J. Biol. Chem. 268 (1993) 10997–11001.

[132] A.A. Aromolaran, L.A. Blatter, Modulation of intracellular Ca2+ release and
capacitative Ca2+ entry by CaMKII inhibitors in bovine vascular endothelial cells,
Am. J. Physiol. 289 (2005) C1426–C1436.

[133] A.S. Aromolaran, A.V. Zima, L.A. Blatter, Role of glycolytically generated ATP for
CaMKII-mediated regulation of intracellular Ca2+ signaling in bovine vascular
endothelial cells, Am. J. Physiol. 293 (2007) C106–C118.

[134] D.M. Zhu, E. Tekle, P.B. Chock, C.Y. Huang, Reversible phosphorylation as a
controlling factor for sustaining calcium oscillations in HeLa cells: Involvement
of calmodulin-dependent kinase II and a calyculin A-inhibitable phosphatase,
Biochemistry 35 (1996) 7214–7223.

[135] C. Bagni, L. Mannucci, C.G. Dotti, F. Amaldi, Chemical stimulation of synapto-
somes modulates α-Ca2+/calmodulin-dependent protein kinase II mRNA
association to polysomes, J. Neurosci. (Online) 20 (2000) RC76.

[136] F. Matifat, F. Hague, G. Brûlé, T. Collin, Regulation of InsP3-mediated Ca2+ release
by CaMKII in Xenopus oocytes, Pflugers Arch. 441 (2001) 796–801.

[137] F. Hague, F. Matifat, G. Brûlé, T. Collin, The inositol (1,4,5)-trisphosphate 3-kinase
of Xenopus oocyte is activated by CaMKII and involved in the regulation of InsP3-
mediated Ca2+ release, FEBS Lett. 449 (1999) 70–74.

[138] M.M. Nalaskowski, G.W. Mayr, The families of kinases removing the Ca2+

releasing second messenger Ins(1,4,5)P3, Curr. Mol. Med. 4 (2004) 277–290.
[139] J.T. Smyth, A.L. Abbott, B. Lee, I. Sienaert, N.N. Kasri, H. De Smedt, T. Ducibella, L.

Missiaen, J.B. Parys, R.A. Fissore, Inhibition of the inositol trisphosphate receptor
of mouse eggs and A7r5 cells by KN-93 via a mechanism unrelated to Ca2+/
calmodulin-dependent protein kinase II antagonism, J. Biol. Chem. 277 (2002)
35061–35070.

[140] L.M. Matovcik, A.R. Maranto, C.J. Soroka, F.S. Gorelick, J. Smith, J.R. Goldenring,
Co-distribution of calmodulin-dependent protein kinase II and inositol trispho-
sphate receptors in an apical domain of gastrointestinal mucosal cells, J.
Histochem. Cytochem. 44 (1996) 1243–1250.

[141] D.J. Bare, C.S. Kettlun, M. Liang, D.M. Bers, G.A. Mignery, Cardiac type 2 inositol
1,4,5-trisphosphate receptor: interaction and modulation by calcium/calmodu-
lin-dependent protein kinase II, J. Biol. Chem. 280 (2005) 15912–15920.

[142] A.V. Zima, D.J. Bare, G.A. Mignery, L.A. Blatter, IP3-dependent nuclear Ca2+

signalling in the mammalian heart, J. Physiol. (Lond.) 584 (2007) 601–611.
[143] X. He, F. Yang, Z. Xie, B. Lu, Intracellular Ca2+, Ca2+/calmodulin-dependent

kinase II mediate acute potentiation of neurotransmitter release by neurotro-
phin-3, J. Cell Biol. 149 (2000) 783–792.

[144] X. Wu, T. Zhang, J. Bossuyt, X. Li, T.A. McKinsey, J.R. Dedman, E.N. Olson, J. Chen,
J.H. Brown, D.M. Bers, Local InsP3-dependent perinuclear Ca2+ signaling in
cardiac myocyte excitation-transcription coupling, J. Clin. Invest. 116 (2006)
675–682.

[145] A.E. West, E.C. Griffith, M.E. Greenberg, Regulation of transcription factors by
neuronal activity, Nat. Rev. Neurosci. 3 (2002) 921–931.

[146] J.Y. Choi, C.M. Beaman-Hall, M.L. Vallano, Granule neurons in cerebellum express
distinct splice variants of the inositol trisphosphate receptor that are modulated
by calcium, Am. J. Physiol. 287 (2004) C971–C980.

[147] A.C. Newton, Regulation of the ABC kinases by phosphorylation: protein kinase C
as a paradigm, Biochem. J. 370 (2003) 361–371.

[148] C.W. Taylor, P. Thorn, Calcium signalling: IP3 rises again... and again, Curr. Biol. 11
(2001) R352–R355.

[149] E. Vermassen, K. Van Acker, W.G. Annaert, B. Himpens, G. Callewaert, L. Missiaen,
H. De Smedt, J.B. Parys, Microtubule-dependent redistribution of the type-1
inositol 1,4,5-trisphosphate receptor in A7r5 smooth muscle cells, J. Cell Sci. 116
(2003) 1269–1277.

[150] E. Vermassen, E. Venmans, R.A. Fissore, B. Himpens, M.Michalak, G. Callewaert, L.
Missiaen, H. De Smedt, J.B. Parys, in: P. Poujeol, O.H. Petersen (Eds.), 3rd FEPS
Congress, Monduzzi Editore, Bologna, 2003, pp. 79–82.
[151] J. Fan, K.L. Byron, Ca2+ signalling in rat vascular smooth muscle cells: a role for
protein kinase C at physiological vasoconstrictor concentrations of vasopressin, J.
Physiol. (Lond.) 524 (2000) 821–831.

[152] P. Pinton, S. Leo, M.R. Wieckowski, G. Di Benedetto, R. Rizzuto, Long-term
modulation of mitochondrial Ca2+ signals by protein kinase C isozymes, J. Cell
Biol. 165 (2004) 223–232.

[153] P.J. Kennelly, E.G. Krebs, Consensus sequences as substrate specificity determi-
nants for protein kinases and protein phosphatases, J. Biol. Chem. 266 (1991)
15555–15558.

[154] R.L. Patterson, D.B. van Rossum, R.K. Barrow, S.H. Snyder, RACK1 binds to inositol
1,4,5-trisphosphate receptors and mediates Ca2+ release, Proc. Natl. Acad. Sci.
USA 101 (2004) 2328–2332.

[155] N. Matter, M.F. Ritz, S. Freyermuth, P. Rogue, A.N. Malviya, Stimulation of
nuclear protein kinase C leads to phosphorylation of nuclear inositol 1,4,5-
trisphosphate receptor and accelerated calcium release by inositol 1,4,5-
trisphosphate from isolated rat liver nuclei, J. Biol. Chem. 268 (1993)
732–736.

[156] A. Bandyopadhyay, D.W. Shin, D.H. Kim, Regulation of ATP-induced calcium
release in COS-7 cells by calcineurin, Biochem. J. 348 (2000) 173–181.

[157] S.N. Poirier, M. Poitras, A. Chorvatova, M.D. Payet, G. Guillemette, FK506 blocks
intracellular Ca2+ oscillations in bovine adrenal glomerulosa cells, Biochemistry
40 (2001) 6486–6492.

[158] E. Vermassen, R.A. Fissore, N. Nadif Kasri, V. Vanderheyden, G. Callewaert, L.
Missiaen, J.B. Parys, H. De Smedt, Regulation of the phosphorylation of the
inositol 1,4,5-trisphosphate receptor by protein kinase C, Biochem. Biophys. Res.
Commun. 319 (2004) 888–893.

[159] G. Arguin, Y. Regimbald-Dumas, M.O. Fregeau, A.Z. Caron, G. Guillemette, Protein
kinase C phosphorylates the inositol 1,4,5-trisphosphate receptor type 2 and
decreases the mobilization of Ca2+ in pancreatoma AR4–2J cells, J. Endocrinol.
192 (2007) 659–668.

[160] A.Z. Caron, B. Chaloux, G. Arguin, G. Guillemette, Protein kinase C decreases the
apparent affinity of the inositol 1,4,5-trisphosphate receptor type 3 in RINm5F
cells, Cell Calcium 42 (2007) 323–331.

[161] G. Song, G. Ouyang, S. Bao, The activation of Akt/PKB signaling pathway and cell
survival, J. Cell. Mol. Med. 9 (2005) 59–71.

[162] E.M. Sale, G.J. Sale, Protein kinase B: signalling roles and therapeutic targeting,
Cell. Mol. Life Sci. 65 (2008) 113–127.

[163] C.W. Distelhorst, G.C. Shore, Bcl-2 and calcium: controversy beneath the surface,
Oncogene 23 (2004) 2875–2880.

[164] M.T. Khan, L. Wagner II, D.I. Yule, C. Bhanumathy, S.K. Joseph, Akt kinase
phosphorylation of inositol 1,4,5-trisphosphate receptors, J. Biol. Chem. 281
(2006) 3731–3737.

[165] Z. Assefa, G. Bultynck, K. Szlufcik, N. Nadif Kasri, E. Vermassen, J. Goris, L.
Missiaen, G. Callewaert, J.B. Parys, H. De Smedt, Caspase-3-induced truncation of
type 1 inositol trisphosphate receptor accelerates apoptotic cell death and
induces inositol trisphosphate-independent calcium release during apoptosis, J.
Biol. Chem. 279 (2004) 43227–43236.

[166] T. Szado, V. Vanderheyden, J.B. Parys, H. De Smedt, K. Rietdorf, L. Kotelevets, E.
Chastre, F. Khan, U. Landegren, O. Soderberg, M.D. Bootman, H.L. Roderick,
Phosphorylation of inositol 1,4,5-trisphosphate receptors by protein kinase B/
Akt inhibits Ca2+ release and apoptosis, Proc. Natl. Acad. Sci. USA 105 (2008)
2427–2432.

[167] S. Marchi, A. Rimessi, C. Giorgi, C. Baldini, L. Ferroni, R. Rizzuto, P. Pinton, Akt kinase
reducing endoplasmic reticulum Ca2+ release protects cells from Ca2+-dependent
apoptotic stimuli, Biochem. Biophys. Res. Commun. 375 (2008) 501–505.

[168] E.A. Nigg, Mitotic kinases as regulators of cell division and its checkpoints, Nat.
Rev. Mol. Cell Biol. 2 (2001) 21–32.

[169] F.A. Barr, H.H. Sillje, E.A. Nigg, Polo-like kinases and the orchestration of cell
division, Nat. Rev. Mol. Cell Biol. 5 (2004) 429–440.

[170] R.A. MacCorkle, T.H. Tan, Mitogen-activated protein kinases in cell-cycle control,
Cell. Biochem. Biophys. 43 (2005) 451–461.

[171] M.H. Verlhac, J.Z. Kubiak, H.J. Clarke, B. Maro, Microtubule and chromatin
behavior follow MAP kinase activity but not MPF activity during meiosis in
mouse oocytes, Development 120 (1994) 1017–1025.

[172] G. Pahlavan, Z. Polanski, P. Kalab, R. Golsteyn, E.A. Nigg, B. Maro, Characterization
of polo-like kinase 1 during meiotic maturation of the mouse oocyte, Dev. Biol.
220 (2000) 392–400.

[173] E. Ledan, Z. Polanski, M.E. Terret, B. Maro, Meiotic maturation of the mouse
oocyte requires an equilibrium between cyclin B synthesis and degradation, Dev.
Biol. 232 (2001) 400–413.

[174] L.M. Mehlmann, D. Kline, Regulation of intracellular calcium in the mouse egg:
calcium release in response to sperm or inositol trisphosphate is enhanced after
meiotic maturation, Biol. Reprod. 51 (1994) 1088–1098.

[175] J. Carroll, The initiation and regulation of Ca2+ signalling at fertilization in
mammals, Semin. Cell Dev. Biol. 12 (2001) 37–43.

[176] T. Jellerette, M. Kurokawa, B. Lee, C. Malcuit, S.Y. Yoon, J. Smyth, E. Vermassen, H.
De Smedt, J.B. Parys, R.A. Fissore, Cell cycle-coupled [Ca2+]i oscillations in mouse
zygotes and function of the inositol 1,4,5-trisphosphate receptor-1, Dev. Biol. 274
(2004) 94–109.

[177] B. Lee, S.Y. Yoon, R.A. Fissore, Regulation of fertilization-initiated [Ca2+]i
oscillations in mammalian eggs: a multi-pronged approach, Semin. Cell Dev.
Biol. 17 (2006) 274–284.

[178] N. Kapur, G.A. Mignery, K. Banach, Cell cycle-dependent calcium oscillations in
mouse embryonic stem cells, Am. J. Physiol. 292 (2007) C1510–C1518.

[179] E.A. Nigg, The substrates of the cdc2 kinase, Semin. Cell Biol. 2 (1991)
261–270.



970 V. Vanderheyden et al. / Biochimica et Biophysica Acta 1793 (2009) 959–970
[180] K. Malathi, S. Kohyama, M. Ho, D. Soghoian, X. Li, M. Silane, A. Berenstein, T.
Jayaraman, Inositol 1,4,5-trisphosphate receptor (type 1) phosphorylation and
modulation by cdc2, J. Cell. Biochem. 90 (2003) 1186–1196.

[181] X. Li, K. Malathi, O. Krizanova, K. Ondrias, K. Sperber, V. Ablamunits, T. Jayaraman,
Cdc2/cyclin B1 interacts with and modulates inositol 1,4,5-trisphosphate
receptor (type 1) functions, J. Immunol. 175 (2005) 6205–6210.

[182] D. Soghoian, V. Jayaraman, M. Silane, A. Berenstein, T. Jayaraman, Inositol 1,4,5-
trisphosphate receptor phosphorylation in breast cancer, Tumour Biol. 26 (2005)
207–212.

[183] G.R. Bai, L.H. Yang, X.Y. Huang, F.Z. Sun, Inositol 1,4,5-trisphosphate receptor type
1 phosphorylation and regulation by extracellular signal-regulated kinase,
Biochem. Biophys. Res. Commun. 348 (2006) 1319–1327.

[184] B. Lee, E. Vermassen, S.Y. Yoon, V. Vanderheyden, J. Ito, D. Alfandari, H. De Smedt,
J.B. Parys, R.A. Fissore, Phosphorylation of IP3R1 and the regulation of [Ca2+]i
responses at fertilization: a role for the MAP kinase pathway, Development 133
(2006) 4355–4365.

[185] L.H. Yang, G.R. Bai, X.Y. Huang, F.Z. Sun, ERK binds, phosphorylates InsP3 type 1
receptor and regulates intracellular calcium dynamics in DT40 cells, Biochem.
Biophys. Res. Commun. 349 (2006) 1339–1344.

[186] R.A. Fissore, F.J. Longo, E. Anderson, J.B. Parys, T. Ducibella, Differential
distribution of inositol trisphosphate receptor isoforms in mouse oocytes, Biol.
Reprod. 60 (1999) 49–57.

[187] J.M. Westendorf, P.N. Rao, L. Gerace, Cloning of cDNAs for M-phase
phosphoproteins recognized by the MPM2 monoclonal antibody and determi-
nation of the phosphorylated epitope, Proc. Natl. Acad. Sci. USA 91 (1994)
714–718.

[188] J. Ito, S.Y. Yoon, B. Lee, V. Vanderheyden, E. Vermassen, R. Wojcikiewicz, D.
Alfandari, H. De Smedt, J.B. Parys, R.A. Fissore, Inositol 1,4,5-trisphosphate
receptor 1, a widespread Ca2+ channel, is a novel substrate of polo-like kinase 1
in eggs, Dev. Biol. 320 (2008) 402–413.
[189] E. Logarinho, C.E. Sunkel, The Drosophila POLO kinase localises to multiple
compartments of the mitotic apparatus and is required for the phosphorylation
of MPM2 reactive epitopes, J. Cell Sci. 111 (1998) 2897–2909.

[190] H. Nakajima, F. Toyoshima-Morimoto, E. Taniguchi, E. Nishida, Identification of a
consensus motif for Plk (Polo-like kinase) phosphorylation reveals Myt1 as a
Plk1 substrate, J. Biol. Chem. 278 (2003) 25277–25280.

[191] P.A. Singleton, L.Y. Bourguignon, CD44v10 interaction with Rho-kinase (ROK)
activates inositol 1,4,5-triphosphate (IP3) receptor-mediated Ca2+ signaling
during hyaluronan (HA)-induced endothelial cell migration, Cell Motil. Cytoske-
leton 53 (2002) 293–316.

[192] A.Y. Tsygankov, Non-receptor protein tyrosine kinases, Front. Biosci. 8 (2003)
s595–s635.

[193] D.J. Harnick, T. Jayaraman, Y. Ma, P. Mulieri, L.O. Go, A.R. Marks, The human type 1
inositol 1,4,5-trisphosphate receptor from T lymphocytes. Structure, localization,
and tyrosine phosphorylation, J. Biol. Chem. 270 (1995) 2833–2840.

[194] T. Jayaraman, K. Ondrias, E. Ondriasova, A.R. Marks, Regulation of the inositol
1,4,5-trisphosphate receptor by tyrosine phosphorylation, Science 272 (1996)
1492–1494.

[195] J. Cui, S.J. Matkovich, N. deSouza, S. Li, N. Rosemblit, A.R. Marks, Regulation of the
type 1 inositol 1,4,5-trisphosphate receptor by phosphorylation at tyrosine 353, J.
Biol. Chem. 279 (2004) 16311–16316.

[196] A.A. Khan, J.P. Steiner, M.G. Klein, M.F. Schneider, S.H. Snyder, IP3 receptor:
localization to plasma membrane of T cells and cocapping with the T cell
receptor, Science 257 (1992) 815–818.

[197] N. deSouza, J. Cui, M. Dura, T.V. McDonald, A.R. Marks, A function for tyrosine
phosphorylation of type 1 inositol 1,4,5-trisphosphate receptor in lymphocyte
activation, J. Cell Biol. 179 (2007) 923–934.

[198] K. Yokoyama, I. Su, T. Tezuka, T. Yasuda, K. Mikoshiba, A. Tarakhovsky, T.
Yamamoto, BANK regulates BCR-induced calcium mobilization by promoting
tyrosine phosphorylation of IP3 receptor, EMBO J. 21 (2002) 83–92.


	Regulation of inositol 1,4,5-trisphosphate-induced Ca2+ release by reversible phosphorylation a.....
	Introduction
	The inositol 1,4,5-trisphosphate receptor
	IRBIT, the IP3R-binding protein released by IP3, and its role in �regulating the phosphorylatio.....
	Structure of IRBIT
	Regulation of the IRBIT domain via (de)phosphorylation
	Phosphorylated IRBIT inhibits the IP3R

	The anti-apoptotic Bcl-2 protein and its role in regulating the �phosphorylation status of IP3R
	Structure and function of Bcl-2
	Regulation of the phosphorylation status of Bcl-2 and IP3R1 by Bcl-2

	Regulation of the IP3R by protein kinase A
	Regulation of the IP3R by protein kinase G
	Regulation of the IP3R by Ca2+/CaM-dependent protein kinase II
	Regulation of the IP3R by protein kinase C (PKC)
	Regulation of the IP3R by protein kinase B
	Regulation of the IP3R by cell cycle-dependent protein kinases
	Regulation of the IP3R by Rho kinases
	Regulation of the IP3R by tyrosine kinases
	Conclusion and perspectives
	Acknowledgments
	References




