30 research outputs found

    IL-15 and PIM kinases direct the metabolic programming of intestinal intraepithelial lymphocytes

    Get PDF
    Intraepithelial lymphocytes (IEL) respond to IL-15 complexed with IL-15Ra but how this intrinsically affects IEL is unclear. Here the authors use proteomics analyses of the main mouse IEL subsets and identify PIM kinases as essential for IEL proliferation, metabolism and effector function downstream of IL-15

    Tissue environment, not ontogeny, defines murine intestinal intraepithelial T lymphocytes

    Get PDF
    Tissue-resident intestinal intraepithelial T lymphocytes (T-IEL) patrol the gut and have important roles in regulating intestinal homeostasis. T-IEL include both induced T-IEL, derived from systemic antigen-experienced lymphocytes, and natural T-IEL, which are developmentally targeted to the intestine. While the processes driving T-IEL development have been elucidated, the precise roles of the different subsets and the processes driving activation and regulation of these cells remain unclear. To gain functional insights into these enigmatic cells, we used high-resolution, quantitative mass spectrometry to compare the proteomes of induced T-IEL and natural T-IEL subsets, with naive CD8(+) T cells from lymph nodes. This data exposes the dominant effect of the gut environment over ontogeny on T-IEL phenotypes. Analyses of protein copy numbers of >7000 proteins in T-IEL reveal skewing of the cell surface repertoire towards epithelial interactions and checkpoint receptors; strong suppression of the metabolic machinery indicating a high energy barrier to functional activation; upregulated cholesterol and lipid metabolic pathways, leading to high cholesterol levels in T-IEL; suppression of T cell antigen receptor signalling and expression of the transcription factor TOX, reminiscent of chronically activated T cells. These novel findings illustrate how T-IEL integrate multiple tissue-specific signals to maintain their homeostasis and potentially function

    Distinct cell death pathways induced by granzymes collectively protect against intestinal Salmonella infection

    Get PDF
    Intestinal intraepithelial T lymphocytes (IEL) constitutively express high amounts of the cytotoxic proteases Granzymes (Gzm) A and B and are therefore thought to protect the intestinal epithelium against infection by killing infected epithelial cells. However, the role of IEL granzymes in a protective immune response has yet to be demonstrated. We show that GzmA and GzmB are required to protect mice against oral, but not intravenous, infection with Salmonella enterica serovar Typhimurium, consistent with an intestine-specific role. IEL-intrinsic granzymes mediate the protective effects by controlling intracellular bacterial growth and aiding in cell-intrinsic pyroptotic cell death of epithelial cells. Surprisingly, we found that both granzymes play non-redundant roles. GzmB-/- mice carried significantly lower burdens of Salmonella, as predominant GzmA-mediated cell death effectively reduced bacterial translocation across the intestinal barrier. Conversely, in GzmA-/- mice, GzmB-driven apoptosis favored luminal Salmonella growth by providing nutrients, while still reducing translocation across the epithelial barrier. Together, the concerted actions of both GzmA and GzmB balance cell death mechanisms at the intestinal epithelium to provide optimal control that Salmonella cannot subvert

    Loss of Adenomatous polyposis coli function renders intestinal epithelial cells resistant to the cytokine IL-22

    Get PDF
    Interleukin-22 (IL-22) is a critical immune defence cytokine that maintains intestinal homeostasis and promotes wound healing and tissue regeneration, which can support the growth of colorectal tumours. Mutations in the adenomatous polyposis coli gene (Apc) are a major driver of familial colorectal cancers (CRCs). How IL-22 contributes to APC-mediated tumorigenesis is poorly understood. To investigate IL-22 signalling in wild-type (WT) and APC-mutant cells, we performed RNA sequencing (RNAseq) of IL-22-treated murine small intestinal epithelial organoids. In WT epithelia, antimicrobial defence and cellular stress response pathways were most strongly induced by IL-22. Surprisingly, although IL-22 activates signal transducer and activator of transcription 3 (STAT3) in APC-mutant cells, STAT3 target genes were not induced. Our analyses revealed that ApcMin/Min cells are resistant to IL-22 due to reduced expression of the IL-22 receptor, and increased expression of inhibitors of STAT3, particularly histone deacetylases (HDACs). We further show that IL-22 increases DNA damage and genomic instability, which can accelerate cellular transition from heterozygosity (ApcMin/+) to homozygosity (ApcMin/Min) to drive tumour formation. Our data reveal an unexpected role for IL-22 in promoting early tumorigenesis while excluding a function for IL-22 in transformed epithelial cells

    Dual-specificity-phosphatase 3 (DUSP3) deletion promotes liver inflammation and high fat diet-induced hepatocellular carcinoma

    Full text link
    Overweight and obesity are considered as risk factors for hepatocellular carcinoma (HCC) development. The mechanisms by which obesity promotes liver inflammation are however poorly understood. We recently generated a full DUSP3 knockout (KO) mouse. The obtained mice were born normal with no spontaneous phenotype. However, while aging, DUSP3-KO mice became obese and developed hepatosteatosis. The phenotype was exacerbated under high fat diet (HFD). Furthermore, when treated with diethylnitrosamine (DEN) procarcinogen, DUSP3-KO mice developed HCC faster than WT littermates. The combination of DEN with HFD accelerated the onset of HCC development in these mice compared to WT mice. This was associated with increased systemic levels of several metabolites and with hyperphosphorylation of the insulin-like growth factor receptor I

    DUSP3/VHR is a pro-angiogenic atypical dual-specificity phosphatase

    Get PDF
    Background DUSP3 phosphatase, also known as Vaccinia-H1 Related (VHR) phosphatase, encoded by DUSP3/Dusp3 gene, is a relatively small member of the dual-specificity protein phosphatases. In vitro studies showed that DUSP3 is a negative regulator of ERK and JNK pathways in several cell lines. On the other hand, DUSP3 is implicated in human cancer. It has been alternatively described as having tumor suppressive and oncogenic properties. Thus, the available data suggest that DUSP3 plays complex and contradictory roles in tumorigenesis that could be cell type-dependent. Since most of these studies were performed using recombinant proteins or in cell-transfection based assays, the physiological function of DUSP3 has remained elusive. Results Using immunohistochemistry on human cervical sections, we observed a strong expression of DUSP3 in endothelial cells (EC) suggesting a contribution for this phosphatase to EC functions. DUSP3 downregulation, using RNA interference, in human EC reduced significantly in vitro tube formation on Matrigel and spheroid angiogenic sprouting. However, this defect was not associated with an altered phosphorylation of the documented in vitro DUSP3 substrates, ERK1/2, JNK1/2 and EGFR but was associated with an increased PKC phosphorylation. To investigate the physiological function of DUSP3, we generated Dusp3-deficient mice by homologous recombination. The obtained DUSP3-/- mice were healthy, fertile, with no spontaneous phenotype and no vascular defect. However, DUSP3 deficiency prevented neo-vascularization of transplanted b-FGF containing Matrigel and LLC xenograft tumors as evidenced by hemoglobin (Hb) and FITC-dextran quantifications. Furthermore, we found that DUSP3 is required for b-FGF-induced microvessel outgrowth in the aortic ring assay. Conclusions All together, our data identify DUSP3 as a new important player in angiogenesis

    CLEC-2 is required for the activation of mouseplatelets by bacterial DNA mimetics

    Full text link
    Background: Short nuclease-resistant phosphorothioate synthetic CpG motif-bearing oligonucleotides (CpG ODNs) mimicking bacterial DNA display potent immunostimulatory activity and are therefore being used in clinical trials as vaccine adjuvants. Cellular uptake and activation depends on the interaction of CpG ODNs with the C-type lectin receptor DEC-205 and subsequent stimulation of the Toll-like receptor 9 (TLR9) and myeloid differentiation primary response 88 (MyD88) signaling cascade. Platelets express TLR9, MyD88, and the C-type lectin-like receptor 2 (CLEC-2). However, the impacts of CpG ODNs on platelet function have been elusive. Aims: To evaluate whether CpG ODNs affect platelet activation and thrombus formation via CLEC-2 and TLR9. Methods: We incubated washed platelets or whole blood from TLR9-, MyD88- or CLEC-2- deficient mice with CpG ODNs. We performed platelet aggregometry, flow cytometric binding and platelet activation assays as well as signal transduction analyses. Thrombus formation and fibrin generation were also analyzed by intravital microscopy in mouse microcirculation upon intravenous injection of CpG ODNs. Results: We show that CpG ODNs bind on platelet surface and are internalized. They activate platelets and induce their aggregation. TLR9- or MyD88-deficient platelets aggregated normally in response to CpG ODN. Interestingly, platelets deficient for the C-type lectin receptor CLEC-2 were unable to capture and internalize CpG ODN. CLEC-2 deficiencyabolished CpG ODN-induced platelet activation and aggregation. CpG ODN stimulated CLEC-2 dependent tyrosine kinase pathway and Syk phosphorylation. In vivo, intravenously injected CpG ODN interacted with platelets adhered to laser injured arteriolar endothelia and promoted fibrin generation and thrombus growth. Conclusion: CLEC-2 mediates CpG ODN uptake and subsequent platelet activation, independently of TLR9, which may serve an important role in the interplay between platelets and immunity
    corecore