211 research outputs found
Recommended from our members
Toward a General Theory for Multiphase Turbulence Part I: Development and Gauging of the Model Equations
A formalism for developing multiphase turbulence models is introduced by analogy to the phenomenological method used for single-phase turbulence. A sample model developed using the formalism is given in detail. The procedure begins with ensemble averaging of the exact conservation equations, with closure accomplished by using a combination of analytical and experimental results from the literature. The resulting model is applicable to a wide range of common multiphase flows including gas-solid, liquid-solid and gas-liquid (bubbly) flows. The model is positioned for ready extension to three-phase turbulence, or for use in two-phase turbulence in which one phase is accounted for in multiple size classes, representing polydispersivity. The formalism is expected to suggest directions toward a more fundamentally based theory, similar to the way that early work in single-phase turbulence has led to the spectral theory. The approach is unique in that a portion of the total energy decay rate is ascribed to each phase, as is dictated by the exact averaged equations, and results in a transport equation for energy decay rate associated with each phase. What follows is a straightforward definition of a turbulent viscosity for each phase, and accounts for the effect of exchange of fluctuational energy among phases on the turbulent shear viscosity. The model also accounts for the effect of slip momentum transfer among the phases on the production of turbulence kinetic energy and on the tensor character of the Reynolds stress. Collisional effects, when appropriate, are included by superposition. The model reduces to a standard form in limit of a single, pure material, and is expected to do a credible job of describing multiphase turbulent flows in a wide variety of regimes using a single set of coefficients
Recommended from our members
Development of predictive simulation capability for reactive multiphase flow
This is the final report of a Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The objective of the project was to develop a self-sustained research program for advanced computer simulation of industrial reactive multiphase flows. The prototype research problem was a three-phase alumina precipitator used in the Bayer process, a key step in aluminum refining. Accomplishments included the development of an improved reaction mechanism of the alumina precipitation growth process, the development of an efficient methods for handling particle size distribution in multiphase flow simulation codes, the incorporation of precipitation growth and agglomeration kinetics in LANL's CFDLIB multiphase flow code library and the evaluation of multiphase turbulence closure models for bubbly flow simulations
Classical analogy for the deflection of flux avalanches by a metallic layer
Sudden avalanches of magnetic flux bursting into a superconducting sample
undergo deflections of their trajectories when encountering a conductive layer
deposited on top of the superconductor. Remarkably, in some cases flux is
totally excluded from the area covered by the conductive layer. We present a
simple classical model that accounts for this behaviour and considers a
magnetic monopole approaching a semi-infinite conductive plane. This model
suggests that magnetic braking is an important mechanism responsible for
avalanche deflection.Comment: 14 pages, 5 figure
Recommended from our members
Optimization of air-sparged plutonium oxalate/hydroxide precipitators
The high cost of waste management and experimental work makes numerical modeling an inexpensive and attractive tool for optimizing and understanding complex chemical processes. Multiphase {open_quotes}bubble{close_quotes} columns are used extensively at the Los Alamos Plutonium Facility for a variety of different applications. No moving parts and efficient mixing characteristics allow them to be used in glovebox operations. Initially, a bubble column for oxalate precipitations is being modeled to identify the effect of various design parameters such as, draft tube location, air sparge rate and vessel geometry. Two-dimensional planar and axisymmetric models have been completed and successfully compared to literature data. Also, a preliminary three-dimensional model has been completed. These results are discussed in this report along with future work
Random matrix models for phase diagrams
We describe a random matrix approach that can provide generic and readily
soluble mean-field descriptions of the phase diagram for a variety of systems
ranging from QCD to high-T_c materials. Instead of working from specific
models, phase diagrams are constructed by averaging over the ensemble of
theories that possesses the relevant symmetries of the problem. Although
approximate in nature, this approach has a number of advantages. First, it can
be useful in distinguishing generic features from model-dependent details.
Second, it can help in understanding the `minimal' number of symmetry
constraints required to reproduce specific phase structures. Third, the
robustness of predictions can be checked with respect to variations in the
detailed description of the interactions. Finally, near critical points, random
matrix models bear strong similarities to Ginsburg-Landau theories with the
advantage of additional constraints inherited from the symmetries of the
underlying interaction. These constraints can be helpful in ruling out certain
topologies in the phase diagram. In this Key Issue, we illustrate the basic
structure of random matrix models, discuss their strengths and weaknesses, and
consider the kinds of system to which they can be applied.Comment: 29 pages, 2 figures, uses iopart.sty. Author's postprint versio
Random matrix model for chiral symmetry breaking and color superconductivity in QCD at finite density
We consider a random matrix model which describes the competition between
chiral symmetry breaking and the formation of quark Cooper pairs in QCD at
finite density. We study the evolution of the phase structure in temperature
and chemical potential with variations of the strength of the interaction in
the quark-quark channel and demonstrate that the phase diagram can realize a
total of six different topologies. A vector interaction representing
single-gluon exchange reproduces a topology commonly encountered in previous
QCD models, in which a low-density chiral broken phase is separated from a
high-density diquark phase by a first-order line. The other five topologies
either do not possess a diquark phase or display a new phase and new critical
points. Since these five cases require large variations of the coupling
constants away from the values expected for a vector interaction, we conclude
that the phase diagram of finite density QCD has the topology suggested by
single-gluon exchange and that this topology is robust.Comment: ReVTeX, 22 pages, 14 figures. An animated gif movie showing the
evolution of the phase diagram with the coupling constants can be viewed at
http://www.nbi.dk/~vdheyden/QCDpd.htm
Pulsed-field magnetization of drilled bulk high-temperature superconductors: flux front propagation in the volume and on the surface
We present a method for characterizing the propagation of the magnetic flux
in an artificially drilled bulk high-temperature superconductor (HTS) during a
pulsed-field magnetization. As the magnetic pulse penetrates the cylindrical
sample, the magnetic flux density is measured simultaneously in 16 holes by
means of microcoils that are placed across the median plane, i.e. at an equal
distance from the top and bottom surfaces, and close to the surface of the
sample. We discuss the time evolution of the magnetic flux density in the holes
during a pulse and measure the time taken by the external magnetic flux to
reach each hole. Our data show that the flux front moves faster in the median
plane than on the surface when penetrating the sample edge; it then proceeds
faster along the surface than in the bulk as it penetrates the sample further.
Once the pulse is over, the trapped flux density inside the central hole is
found to be about twice as large in the median plane than on the surface. This
ratio is confirmed by modelling
Damping rate of plasmons and photons in a degenerate nonrelativistic plasma
A calculation is presented of the plasmon and photon damping rates in a dense
nonrelativistic plasma at zero temperature, following the resummation program
of Braaten-Pisarski. At small soft momentum , the damping is dominated by scattering processes corresponding to double longitudinal Landau
damping. The dampings are proportional to , where
is the Fermi velocity.Comment: 9 pages, 2 figure
Lifetime Effects in Color Superconductivity at Weak Coupling
Present computations of the gap of color superconductivity in weak coupling
assume that the quarks which participate in the condensation process are
infinitely long-lived. However, the quasiparticles in a plasma are
characterized by having a finite lifetime. In this article we take into account
this fact to evaluate its effect in the computation of the color gap. By first
considering the Schwinger-Dyson equations in weak coupling, when one-loop
self-energy corrections are included, a general gap equation is written in
terms of the spectral densities of the quasiparticles. To evaluate lifetime
effects, we then model the spectral density by a Lorentzian function. We argue
that the decay of the quasiparticles limits their efficiency to condense. The
value of the gap at the Fermi surface is then reduced. To leading order, these
lifetime effects can be taken into account by replacing the coupling constant
of the gap equation by a reduced effective one.Comment: 16 pages, 2 figures; explanations on the role of the Meissner effect
added; 2 references added; accepted for publication in PR
Nonequilibrium Dynamics of Optical Lattice-Loaded BEC Atoms: Beyond HFB Approximation
In this work a two-particle irreducible (2PI) closed-time-path (CTP)
effective action is used to describe the nonequilibrium dynamics of a Bose
Einstein condensate (BEC) selectively loaded into every third site of a
one-dimensional optical lattice. The motivation of this work is the recent
experimental realization of this system at National Institute of Standards and
Technology (NIST) where the placement of atoms in an optical lattice is
controlled by using an intermediate superlattice. Under the 2PI CTP scheme with
this initial configuration, three different approximations are considered: a)
the Hartree-Fock-Bogoliubov (HFB) approximation, b) the next-to-leading order
1/ expansion of the 2PI effective action up to second order in the
interaction strength and c) a second order perturbative expansion in the
interaction strength. We present detailed comparisons between these
approximations and determine their range of validity by contrasting them with
the exact many body solution for a moderate number of atoms and wells. As a
general feature we observe that because the second order 2PI approximations
include multi-particle scattering in a systematic way, they are able to capture
damping effects exhibited in the exact solution that a mean field collisionless
approach fails to produce. While the second order approximations show a clear
improvement over the HFB approximation our numerical result shows that they do
not work so well at late times, when interaction effects are significant.Comment: 34 pages, 7 figure
- …