325 research outputs found

    Attack on and Defense of Debate

    Get PDF

    Case Against Television

    Get PDF

    Talent-Oriented Leadership, the Small Group, and Implications for Organization

    Get PDF

    Glucan Phosphatase Variants for Starch Phosphorylation

    Get PDF
    Glucan phosphatase nucleotide or polypeptide variants of the presently-disclosed subject matter can alter the biophysical properties of starch in vitro or in planta, as well as the total starch biomass production in planta as compared to plants expressing wild-type glucan phosphatases. Plants producing the polypeptide variants of the presently-disclosed subject matter can have increased starch accumulation, increased starched biomass, and/or starch having desired biophysical properties. A method of the presently-disclosed subject matter for producing altered starch includes providing a plant that produces a glucan phosphatase polypeptide variant that comprises an amino acid mutation and collecting starch from the plant

    Thermophilic Phosphatases and Methods for Processing Starch Using the Same

    Get PDF
    The presently-disclosed subject matter includes thermophilic glucan phosphatase polypeptides. In some embodiments the polypeptide includes non-native laforin polypeptides, or fragments and/or variants thereof, and in some instances the polypeptide can alter the biophysical properties of starch in vitro or in planta. The presently-disclosed subject matter also includes isolated polynucleotides encoding the present polypeptides, methods for processing starch by exposing starch to the present polypeptides, and methods for making the present polypeptides

    Control of Cellular Motility by Neuropilin-Mediated Physical Interactions

    Get PDF
    The neuropilin (Nrp) family consists of multifunctional cell surface receptors with critical roles in a number of different cell and tissue types. A core aspect of Nrp function is in ligand-dependent cellular migration, where it controls the multistep process of cellular motility through integration of ligand binding and receptor signaling. At a molecular level, the role of Nrp in migration is intimately connected to the control of adhesive interactions and cytoskeletal reorganization. Here, we review the physiological role of Nrp in cellular adhesion and motility in the cardiovascular and nervous systems. We also discuss the emerging pathological role of Nrp in tumor cell migration and metastasis, providing motivation for continued efforts toward developing Nrp inhibitors

    Structure and Functions of Angiotensinogen

    Get PDF
    Angiotensinogen (AGT) is the sole precursor of all angiotensin peptides. Although AGT is generally considered as a passive substrate of the renin–angiotensin system, there is accumulating evidence that the regulation and functions of AGT are intricate. Understanding the diversity of AGT properties has been enhanced by protein structural analysis and animal studies. In addition to whole-body genetic deletion, AGT can be regulated in vivo by cell-specific procedures, adeno-associated viral approaches and antisense oligonucleotides. Indeed, the availability of these multiple manipulations of AGT in vivo has provided new insights into the multifaceted roles of AGT. In this review, the combination of structural and functional studies is highlighted to focus on the increasing recognition that AGT exerts effects beyond being a sole provider of angiotensin peptides

    Mechanism of Selective VEGF-A Binding by Neuropilin-1 Reveals a Basis for Specific Ligand Inhibition

    Get PDF
    Neuropilin (Nrp) receptors function as essential cell surface receptors for the Vascular Endothelial Growth Factor (VEGF) family of proangiogenic cytokines and the semaphorin 3 (Sema3) family of axon guidance molecules. There are two Nrp homologues, Nrp1 and Nrp2, which bind to both overlapping and distinct members of the VEGF and Sema3 family of molecules. Nrp1 specifically binds the VEGF-A164/5 isoform, which is essential for developmental angiogenesis. We demonstrate that VEGF-A specific binding is governed by Nrp1 residues in the b1 coagulation factor domain surrounding the invariant Nrp C-terminal arginine binding pocket. Further, we show that Sema3F does not display the Nrp-specific binding to the b1 domain seen with VEGF-A. Engineered soluble Nrp receptor fragments that selectively sequester ligands from the active signaling complex are an attractive modality for selectively blocking the angiogenic and chemorepulsive functions of Nrp ligands. Utilizing the information on Nrp ligand binding specificity, we demonstrate Nrp constructs that specifically sequester Sema3 in the presence of VEGF-A. This establishes that unique mechanisms are used by Nrp receptors to mediate specific ligand binding and that these differences can be exploited to engineer soluble Nrp receptors with specificity for Sema3

    Oligomerization but Not Membrane Bending Underlies the Function of Certain F-BAR Proteins in Cell Motility and Cytokinesis

    Get PDF
    SummaryF-BAR proteins function in diverse cellular processes by linking membranes to the actin cytoskeleton. Through oligomerization, multiple F-BAR domains can bend membranes into tubules, though the physiological importance of F-BAR-to-F-BAR assemblies is not yet known. Here, we investigate the F-BAR domain of the essential cytokinetic scaffold, Schizosaccharomyces pombe Cdc15, during cytokinesis. Challenging a widely held view that membrane deformation is a fundamental property of F-BARs, we report that the Cdc15 F-BAR binds, but does not deform, membranes in vivo or in vitro, and six human F-BAR domains—including those from Fer and RhoGAP4—share this property. Nevertheless, tip-to-tip interactions between F-BAR dimers are critical for Cdc15 oligomerization and high-avidity membrane binding, stabilization of contractile ring components at the medial cortex, and the fidelity of cytokinesis. F-BAR oligomerization is also critical for Fer and RhoGAP4 physiological function, demonstrating its broad importance to F-BAR proteins that function without membrane bending

    Functional Integration of the Conserved Domains of Shoc2 Scaffold

    Get PDF
    Shoc2 is a positive regulator of signaling to extracellular signal-regulated protein kinases 1 and 2 (ERK1/2). Shoc2 is also proposed to interact with RAS and Raf-1 in order to accelerate ERK1/2 activity. To understand the mechanisms by which Shoc2 regulates ERK1/2 activation by the epidermal growth factor receptor (EGFR), we dissected the role of Shoc2 structural domains in binding to its signaling partners and its role in regulating ERK1/2 activity. Shoc2 is comprised of two main domains: the 21 leucine rich repeats (LRRs) core and the N-terminal non-LRR domain. We demonstrated that the N-terminal domain mediates Shoc2 binding to both M-Ras and Raf-1, while the C-terminal part of Shoc2 contains a late endosomal targeting motif. We found that M-Ras binding to Shoc2 is independent of its GTPase activity. While overexpression of Shoc2 did not change kinetics of ERK1/2 activity, both the N-terminal and the LRR-core domain were able to rescue ERK1/2 activity in cells depleted of Shoc2, suggesting that these Shoc2 domains are involved in modulating ERK1/2 activity
    • …
    corecore