

Molecular and Cellular Biochemistry Faculty Patents

Molecular and Cellular Biochemistry

12-29-2015

Thermophilic Phosphatases and Methods for Processing Starch Using the Same

Matthew S. Gentry University of Kentucky, matthew.gentry@uky.edu

Craig W. Vander Kooi *University of Kentucky*, craig.vanderkooi@uky.edu

Right click to open a feedback form in a new tab to let us know how this document benefits you.

Follow this and additional works at: https://uknowledge.uky.edu/biochem_patents Part of the <u>Medical Biochemistry Commons</u>

Recommended Citation

Gentry, Matthew S. and Vander Kooi, Craig W., "Thermophilic Phosphatases and Methods for Processing Starch Using the Same" (2015). *Molecular and Cellular Biochemistry Faculty Patents*. 5. https://uknowledge.uky.edu/biochem_patents/5

This Patent is brought to you for free and open access by the Molecular and Cellular Biochemistry at UKnowledge. It has been accepted for inclusion in Molecular and Cellular Biochemistry Faculty Patents by an authorized administrator of UKnowledge. For more information, please contact UKnowledge@lsv.uky.edu.

US009222114B1

(12) United States Patent

Gentry et al.

(54) THERMOPHILIC PHOSPHATASES AND METHODS FOR PROCESSING STARCH USING THE SAME

- (71) Applicant: University of Kentucky Research Foundation, Lexington, KY (US)
- (72) Inventors: Matthew Gentry, Lexington, KY (US); Craig Vander Kooi, Lexington, KY (US)
- (73) Assignee: University of Kentucky Research Foundation, Lexington, KY (US)
- (*) Notice: Subject to any disclaimer, the term of this patent is extended or adjusted under 35 U.S.C. 154(b) by 0 days.
- (21) Appl. No.: 14/282,815
- (22) Filed: May 20, 2014

Related U.S. Application Data

- (60) Provisional application No. 61/825,440, filed on May 20, 2013.
- (51) Int. Cl. *C12P 19/00* (2006.01) *C12N 9/16* (2006.01)
- (52) U.S. Cl. CPC .. C12P 19/00 (2013.01); C12N 9/16 (2013.01)
- (58) Field of Classification Search NoneSee application file for complete search history.

See application me for complete search misto

(56) **References Cited**

PUBLICATIONS

"A 100%-complete sequence reveals unusually simple genomic features in the hot-spring red alga Cyanidioschyzon merolae" BMC Biol. 5:28-28(2007).*

Edner, et al, "Glucan, Water Dinkinase Activity Stimulates Breakdown of Starch Granules by Plastidial β -Amylases", Plant Physiology, vol. 145, Sep. 2007, pp. 17-28.

Gentry, et al, "The phosphatase laforin crosses evolutionary boundaries and links carbohydrate metabolism to neuronal disease", JCB, vol. 178, No. 3, Jul. 30, 2007, pp. 477-488.

Haki, et al, "Developments in industrial important thermostable enzymes: a review", Bioresource Technology, vol. 89, 2003, pp. 17-34.

Jobling, Steve, "Improving starch for food and industrial applications", Current Opinion in Plant Biology, vol. 7, 2004, pp. 210-218.

(10) Patent No.: US 9,222,114 B1

(45) **Date of Patent:** Dec. 29, 2015

Kelly, et al, "Stach and α -glucan acting enzymes, modulating their properties by directed evolution", Journal of Biotechnology, vol. 140, 2009, pp. 184-193.

Kotting, et al, "STARCH-EXCESS4 Is a Laforin-Like Phosphoglucan Phosphatase Required for Starch Degradation in Arabidopsis thaliana", The Plant Cell, vol. 21, Jan. 2009, pp. 334-346.

Leemhuis, et al, "Engineering of cyclodextrin glucanotransferases and the impact for biotechnical applications", Appl Microbiol Biotechnol, vol. 85, 2010, pp. 823-835.

Leslie, Mitch, "Catching killer carbs", JCB, vol. 178, No. 3, 2007, pp. 338-339.

Morell, et al, "Towards the rational design of cereal starches", Current Opinion in Plant Biology, vol. 8, 2005, pp. 204-210.

Nielsen, et al, "Protein engineering of bacterial α -amylases", Biochimica et Biophysica Acta, vol. 1543, 2000, pp. 253-274.

Sanchez, et al, "Trends in biotechnological production of fuel ethanol from different feedstocks", Bioresource Technology, vol. 99, 2008, pp. 5270-5295.

Santelia, et al, "Progress in Arabidopsis starch research and potential biotechnological applications", Current Opinion in Biotechnology, vol. 22, 2010, pp. 1-10.

Sherwood, et al., A malachite green-based assay to assess glucan phosphatase activity. Analyical Biochemistry, vol. 435, 2013, pp. 54-56.

Vander Kooi, et al, "Structural basis for the glucan phosphatase activity of Starch Excess4", PNAS, vol. 107, pp. 15379-84.

Wang, et al, "Glycogen and related polysaccharides inhibit the laforin dual-specificity protein phosphatase." Biochemical and Biophysical Research Communications, vol. 325, 2004, pp. 726-730.

Meekins, et al, "Phosphoglucan-bound structure of starch phosphatase Starch Excess4 reveals the mechanism for C6 specificity," PNAS Early Edition, 2014; pp. 1-6.

* cited by examiner

Primary Examiner - Suzanne M Noakes

Assistant Examiner — Jae W Lee

(74) Attorney, Agent, or Firm — Stites & Harbison PLLC; Mandy Wilson Decker

(57) ABSTRACT

The presently-disclosed subject matter includes thermophilic glucan phosphatase polypeptides. In some embodiments the polypeptide includes non-native laforin polypeptides, or fragments and/or variants thereof, and in some instances the polypeptide can alter the biophysical properties of starch in vitro or in planta. The presently-disclosed subject matter also includes isolated polynucleotides encoding the present polypeptides, methods for processing starch by exposing starch to the present polypeptides, and methods for making the present polypeptides.

6 Claims, 7 Drawing Sheets

Figure 1

Figure 3

Figure 5E

60

THERMOPHILIC PHOSPHATASES AND METHODS FOR PROCESSING STARCH USING THE SAME

RELATED APPLICATION

This application claims priority from U.S. Provisional Patent Application No. 61/825,440, filed May 20, 2013, the entire disclosure of which is incorporated herein by this ref-10erence.

GOVERNMENT INTEREST

This invention was made with government support under Grant Number R01NS070899 awarded the National Institutes of Health and Grant Number MCB1252345 awarded by the National Science Foundation. The government has certain rights in the invention.

TECHNICAL FIELD

25 The presently-disclosed subject matter relates to proteins such as glucan phosphatases and methods of using the same to process starch. In particular, embodiments of the presentlydisclosed subject matter relate to thermophilic phosphatase as well as methods for processing starch utilizing at least a 30 thermophilic phosphatase and an amylase.

INTRODUCTION

Starch is an important compound for many different purposes, including for food sources, beverages, the manufacture of plastics, energy sources such as biofuels, industrial feedstocks, and so forth. For instance, starch from the seeds of cereal crops and the tubers of potatoes and cassava accounts $_{40}$ for 50-80% of daily caloric intake. In the United States, over 20% of corn starch is converted into ethanol for use as a renewable biofuel, and starch also plays a central role in the production of molecular hydrogen by some micro algae and in algal oil production. Microalgal oil production is increased 45 by supplying starch to the microalgae so that they grow mixotrophically rather than autotrophically. Starch is also a cheap and renewable industrial feedstock for producing paper, textiles, adhesives, plastics, and pharmaceuticals.

Starch is comprised of amylose and amylopectin, which are both glucose polymers. Amylose, the minor component, is a linear molecule comprised of glucose moieties linked together by α -1,4-glycosidic bonds with very few branches. Amylopectin, the major component, is comprised of glucose 55 linked together by α -1,4-glycosidic bonds with α -1,6-glycosidic branches occurring every 12-25 glucose moieties. The branches in amylopectin are arranged in clusters at regular intervals, resulting in a tree-like pattern. Within the clusters, adjacent glucose chains form double helices and the clusters organize into crystalline lamellae. The crystalline lamellae make amylopectin, and thus starch, water-insoluble. This insolubility renders the surface of starch inaccessible to most enzymes, including the amylases that can break it down for $_{65}$ processing. The structures of amylopectin (1) and amylase (2) are shown below.

2

Therefore, to utilize starch for subsequent processing, starch-based feedstocks are generated by a three-phase approach that utilizes physical, chemical, and enzymatic modification (FIG. 1). The physical modification produces high energy costs due to both milling the material and cyclically modulating the temperature between 50° C. to over 100° C. to liquefy starch. In addition to physical modification, large amounts of acids and bases are utilized to increase enzymatic accessibility. Large quantities of these chemicals are costly to purchase and companies also incur the cost of disposing the hazardous waste. Finally, these processes require relatively large amounts of recombinant α -amylase, which cleave α -1,4-glycosidic linkages, to convert the complex sugar into fermentable glucose in these.

Over the last 25 years others have attempted to optimize α -amylase catalytic efficiency, thermostability, and pH tolerance to increase starch processing techniques. These efforts utilize a three-tiered approach of exploiting α -amylases' biological diversity, structure/function analysis, and directed evolution. Despite advances in increased catalytic efficiency as well as heat and pH tolerance, the amylases are still unable to degrade starch without mechanical and chemical assistance. Thus, generating starch-feedstocks using known techniques still results in high costs and environmental concerns related to feedstock chemical treatments.

Hence, there remains a need for compositions and methods for processing starch that are relatively less expensive, more efficient, and present fewer environmental concerns than known compositions and methods.

BRIEF DESCRIPTION OF THE SEQUENCE LISTING

The following is a brief description of the Sequence Listing that is attached hereto and is hereby incorporated by reference in its entirety.

SEQ ID NO: 1 is a nucleic acid sequence encoding a Cyanidioschyzon merolae laforin polypeptide of SEQ ID NO: 2;

SEQ ID NO: 2 is an amino acid sequence encoding a Cyanidioschyzon merolae laforin polypeptide;

10

SEQ ID NO: 3 is a nucleic acid sequence encoding a *Cyanidioschyzon merolae* laforin polypeptide fragment of SEQ ID NO: 4;

SEQ ID NO: 4 is an amino acid sequence encoding a *Cyanidioschyzon merolae* laforin polypeptide fragment.

SEQ ID NO: 5 is a nucleic acid sequence encoding a *Cyanidioschyzon merolae* laforin polypeptide fragment of SEQ ID NO: 6;

SEQ ID NO: 6 is an amino acid sequence encoding a *Cyanidioschyzon merolae* laforin polypeptide fragment.

SEQ ID NO: 7 is a nucleic acid sequence encoding a *Cyanidioschyzon merolae* laforin polypeptide fragment of SEQ ID NO: 8;

SEQ ID NO: 8 is an amino acid sequence encoding a ₁₅ *Cyanidioschyzon merolae* laforin polypeptide fragment.

SEQ ID NO: 9 is a nucleic acid sequence encoding a *Cyanidioschyzon merolae* laforin polypeptide fragment of SEQ ID NO: 10;

SEQ ID NO: 10 is an amino acid sequence encoding a 20 *Cyanidioschyzon merolae* laforin polypeptide fragment.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 includes a schematic showing a conventional 25 method for processing starch compared to a plant-based starch processing method.

FIG. **2** includes a schematic showing the sequences of the phosphatases of SEQ ID NOS: 2, 4, 6, 8, and 10 as well as human laforin, SEX4, and LSF2.

FIG. **3** includes a plot showing the results of a glucan phosphatase assay performed with human, *Cyaniioschyzon merolae* (*C. merolae*), chicken, rat, and mouse laforin.

FIG. **4** includes Coomassie stained protein gel images showing the expression and purification of different *C. mero-*³⁵ *lae* laforin (Cm-laforin) fragments from *E. coli.*

FIG. 5A includes a plot showing Cm-laforin phosphatase activity utilizing a non-biologically relevant substrate pNPP over a range from about 37° C. to about 75° C.

FIG. **5B** includes a plot showing Cm-laforin phosphatase ⁴⁰ activity from about 3.0 pH to about 8.0 pH.

FIG. **5**C includes a plot showing SEX phosphatase activity utilizing a non-biologically relevant substrate pNPP over a range from about 37° C. to about 75° C.

FIG. **5**D includes a plot showing SEX4 phosphatase activ- ⁴⁵ ity from about 3.0 pH to about 8.0 pH.

FIG. **5**E includes a plot showing the efficiency with which Cm-laforin and Hs-laforin can remove phosphate from the C3 and C6 positions of a glucose ring.

FIG. **6** includes a plot showing that Cm-laforin increases ⁵⁰ the degradation of starch via amylases (BAM3 and ISA3) in the presence of the kinase GWD.

DETAILED DESCRIPTION OF EXEMPLARY EMBODIMENTS

The details of one or more embodiments of the presentlydisclosed subject matter are set forth in this document. Modifications to embodiments described in this document, and other embodiments, will be evident to those of ordinary skill ⁶⁰ in the art after a study of the information provided in this document. The information provided in this document, and particularly the specific details of the described exemplary embodiments, is provided primarily for clearness of understanding and no unnecessary limitations are to be understood ⁶⁵ therefrom. In case of conflict, the specification of this document, including definitions, will control. 4

The present invention relates to novel, unique enzymes (i.e., polypeptides) for processing starch. Processing starch can include physically modifying the structure of a starch, and in certain instances includes degrading the starch. The polypeptides disclosed herein can also alter the biophysical properties of starch and/or total biomass starch production. For example, some embodiments of the present polypeptides can increase total biomass starch production and/or degrade starch in vitro, in planta, or both.

As used herein, the term "starch" is given its ordinary meaning in the art. In this regard, starches are heterogeneous, and their physicochemical properties, composition with respect to amylose versus amylopectin, amount of phosphorylation, and molecular structure all can vary greatly depending on the source of the starch. These properties can also affect starch gelatinization and viscosity, and thus impact starch processing. Exemplary starch sources include, but are not limited to, *Arabidopsis*, potato, corn, cassava, rice, wheat, and the like.

As used herein, the terms "polypeptide", "protein", and "peptide", which are used interchangeably herein, refer to a polymer of the protein amino acids, or amino acid analogs, regardless of its size or function. Although "protein" is often used in reference to relatively large polypeptides, and "peptide" is often used in reference to small polypeptides, usage of these terms in the art overlaps and varies. The term "polypeptide" as used herein refers to peptides, polypeptides, and proteins, unless otherwise noted. The terms "protein", "polypeptide", and "peptide" are used interchangeably herein when referring to a gene product. Thus, exemplary polypeptides include gene products, naturally occurring proteins, homologs, orthologs, paralogs, fragments and other equivalents, variants, and analogs of the foregoing.

In some embodiments the presently-disclosed polypeptides include thermophilic phosphatases and/or thermophilic glucan phosphatases. Glucan phosphatases dephosphorylate glucans in starch metabolism. In some instances, glucan phosphatases dephosphorylate glucans so that starch can be completely degraded by amylases.

In some embodiments the polypeptide is a laforin polypeptide, or a fragment and/or variant thereof. In some embodiments the laforin polypeptide can be a vertebrate laforin or a vertebrate laforin ortholog. Exemplary vertebrate laforin orthologs can include about 85%, about 90%, or about 95% similarity with other vertebrate laforin at the amino acid level. Furthermore, in some embodiments the polypeptide includes a protozoan laforin, or a fragment and/or variant thereof. The laforin can be based on laforin obtained from protozoa including, but not limited to, tetrahymena thermophile, Eimeria tenella, Toxoplasma gondii, Paramecium tetraurelia, Neospora caninum, and Cyanidioschyzon merolae. Exemplary protozoan laforin orthologs can include about 20% or more, about 25% or more, about 30% or more, or about 35% or more similarity with Homo sapien laforin (Hs-laforin) at 55 the amino acid level.

Certain plant species, such as single-cell algae *Cyanid-ioschyzon merolae* (*C. merolae*), include thermophilic polypeptides (thermophile) that can process and degrade native starch under harsh temperatures and extreme pH conditions in. For instance, *C. merolae* lives in acidic environments at temperatures of about 50 to about 75° C., living in and around thermal vents. The present inventors have found that *C. merolae* includes laforin (hereinafter "Cm-laforin") polypeptides that can enhance starch degradation by amylases and allow amylases to release more glucose. A full length native wild-type protein sequence for Cm-laforin is included herein (SEQ ID NO: 2). Embodiments of the pres-

ently-disclosed polypeptides include isolated and/or nonnaturally occurring fragments and/or variants of wild-type laforin.

Accordingly, in some embodiments the polypeptide is a thermophile. The term "thermophile" herein refers to charac-5 teristic of operating normally (i.e., is stable) at least at temperatures above about 40° C. In some embodiments the thermophile can operate at temperatures between about 40° C. and about 85° C. For example, a "thermophilic polypeptide," "thermophile," or and the like refer to a polypeptide that can 10 function at least at temperatures above about 40° C. some thermophilic organism" is an organism that can function at least at temperatures above about 40° C. Some thermophiles can also be stable at relatively lower temperatures. For instance, some exemplary Cm-laforin polypeptides are stable 15 at temperatures of about 10° C. to about 75° C.

Additionally, in some embodiments the polypeptide can be stable at non-neutral pH. In some embodiments the polypeptide can be stable at about 3.0 pH to about 8.0 pH. In specific embodiments the polypeptide can be stable at about 3.0 pH, 20 4.0 pH, 5.0 pH, 6.0 pH, 7.0 pH, or 8.0 pH.

In some embodiments the polypeptide is a fragment of the polypeptide including the sequence of SEQ ID NO: 2. The terms "polypeptide fragment" or "fragment", when used in reference to a reference polypeptide, refers to a polypeptide in 25 which amino acid residues are deleted as compared to the reference polypeptide itself, but where the remaining amino acid sequence is usually identical to the corresponding positions in the reference polypeptide. Such deletions can occur at the amino-terminus, carboxy-terminus of the reference 30 polypeptide, or alternatively both. A fragment can also be a "functional fragment," in which case the fragment retains some or all of the activity of the reference polypeptide as described herein.

In some embodiments the polypeptide can comprise the 35 sequence of SEQ ID NO: 2 and can include about 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 314, 315, 316, 40 317, 318, 319, 320, 321, 322, 323, 324, 325, 326, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 357, 358, 359, 360, 361, 362, 363, 364, 365, 366, 367, 368, 369, 370, 371, 372, 373, 374, 375, 376, 45 377, 378, 379, 380, 381, 382, 383, 384, 385, 386, 387, 388, 389, 390, 391, 392, 393, 394, 395, 396, 397, 398, 399, 400, 401, 402, 403, 404, 405, 406, 407, 408, 409, 410, 411, 412, 413, 414, 415, 416, 417, 418, 419, 420, 421, 422, 423, 424, 425, 426, 427, 428, 429, 430, 431, 432, 433, 434, 435, 436, 50 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 454, 455, 456, 457, 458, 459, 460, 461, 462, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 495, 496, 55 497, 498, 499, 500, 501, 502, 503, 504, 505, 506, 507, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 522, 523, 524, 525, 526, 527, 528, 529, 530, or 531 amino acid residues. In specific embodiments the polypeptide fragments include about 1 to about 266 amino acid residues 60 deleted from the N-terminus of the polypeptide, including polypeptide fragments having about 1 to about 266 amino acid residues deleted from the N-terminus immediately following the start methionine (M) amino acid.

As described herein, the presently disclosed subject matter 65 also include variants of the presently-disclosed polypeptides. The term "variant" refers to an amino acid sequence that is

different from the reference polypeptide by one or more amino acids, e.g., one or more amino acid substitutions. For example a glucan phosphate polypeptide variant differs from wild-type glucan phosphatase by one or more amino acid substitutions, i.e., mutations. In this regard, polypeptide variants comprising combinations of two or more mutations can respectively be referred to as double mutants, triple mutants, and so forth. It will be recognized that certain mutations can result in a notable change in function of a polypeptide, while other mutations will result in little to no notable change in function of the polypeptide.

In some embodiment the present polypeptides include constituents that share at least 75% homology with a wild type polypeptide. In some embodiments the polypeptides share at least 85% homology with the wild type polypeptide. In some embodiments the polypeptides share at least 90% homology with the wild type polypeptide. In some embodiments the polypeptides share at least 95% homology with the wild type polypeptide. The wild type polypeptide can include the nonnative Cm-laforin polypeptide having the sequence of SEQ ID NO: 2.

"Percent identity," or "percent homology" when used herein to describe to an amino acid sequence or a nucleic acid sequence, relative to a reference sequence, can be determined using the formula described by Karlin and Altschul (Proc. Natl. Acad. Sci. USA 87: 2264-2268, 1990, modified as in Proc. Natl. Acad. Sci. USA 90:5873-5877, 1993). Such a formula is incorporated into the basic local alignment search tool (BLAST) programs of Altschul et al. (J. Mol. Biol. 215: 403-410, 1990). [BLAST nucleotide searches are performed with the NBLAST program, score+100, wordlength=12, to obtain nucleotide sequences homologous to a nucleic acid molecule of the invention. BLAST protein searches are performed with the XBLAST program, score=50, word length=3, to obtain amino acid sequences homologous to a reference polypeptide (e.g., SEQ ID NO: X). To obtain gapped alignments for comparison purposes, Gapped BLAST is utilized as described in Altschul, et al. (Nucleic Acids Res. 25: 3389-3402, 1997). When utilizing BLAST and Gapped BLAST programs, the default parameters of the respective programs (e.g., XBLAST and NBLAST) are used. See http://www.ncbi.nlm.nik.gov, and reference is made to the most recent version of the programs that are available as of Jul. 19, 2012.

In one embodiment the polypeptide comprises the sequence of SEQ ID NO: 4. In another embodiment the polypeptide comprises a fragment, a variant, or both a fragment and variant of SEQ ID NO: 4. In another embodiment the polypeptide comprises the sequence of SEQ ID NO: 6. In another embodiment the polypeptide comprises a fragment, a variant, or both a fragment and variant of SEQ ID NO: 6. In another embodiment the polypeptide comprises the sequence of SEQ ID NO: 6. In another embodiment the polypeptide comprises the sequence of SEQ ID NO: 8. In another embodiment the polypeptide comprises a fragment, a variant, or both a fragment and variant of SEQ ID NO: 8. In another embodiment the polypeptide comprises the sequence of SEQ ID NO: 8. In another embodiment the polypeptide comprises the sequence of SEQ ID NO: 10. In another embodiment the polypeptide comprises a fragment, a variant, or both a fragment and variant, or both a fragment, a variant, or both a fragment and variant, or both a fragment, a variant, or both a fragment and variant, or both a fragment and variant, or both a fragment, a variant, or both a fragment, a variant, or both a fragment and variant, or both a fragment, a variant, or both a fragment, a variant, or both a fragment, a variant, or both a fragment and variant of SEQ ID NO: 10.

The presently-disclosed subject matter also includes isolated polynucleotides that encode any of the presently-disclosed polypeptides. The terms "nucleotide," "polynucleotide," "nucleic acid," and "nucleic acid sequence" refer to deoxyribonucleotides or ribonucleotides and polymers thereof in either single or double stranded form. Unless specifically limited, the term encompasses nucleic acids containing known analogues of natural nucleotides that have similar binding properties as the reference nucleic acid and are

metabolized in a manner similar to naturally occurring nucleotides. The terms also include compounds only comprising the coding regions, or exons, of a particular DNA sequence. The terms are therefore inclusive of cDNA molecules.

The term "isolated", when used in the context of an isolated 5 polynucleotide or an isolated polypeptide, is a polynucleotide or polypeptide that, by the hand of man, exists apart from its native environment and is therefore not a product of nature. An isolated polynucleotide or polypeptide can exist in a purified form or can exist in a non-native environment such as, for example, in a transgenic host cell. Unless otherwise indicated, all polypeptides and polynucleotides described herein include isolated forms thereof even where not explicitly recited. Thus, unless stated otherwise, all the polypeptide and 15 polynucleotide described herein can be modified by the term isolated.

In some embodiments the polynucleotides encode a thermophilic phosphatase, laforin polypeptide, and/or a Cm-laforin polypeptide. In other embodiments the poly- 20 nucleotide includes the sequence of SEQ ID NO: 1, and the polynucleotide encodes the polypeptide including the sequence of SEQ ID NO: 2. In other embodiments the polynucleotide encodes a fragment and/or a variant of the polypeptide including the sequence of SEQ ID NO: 2.

As before, the term "polynucleotide fragment" or the like can refer to a polynucleotide in which nucleic acids are deleted as compared to the reference polynucleotide itself, but where the remaining nucleic acid sequence is usually identical to the corresponding positions in the reference poly- 30 nucleotide. Such deletions can occur at any location of the sequence. In some embodiments the polynucleotide includes a fragment of the isolated polynucleotide having the sequence of SEQ ID NO: 1. In some embodiments the polynucleotide fragment includes about 800, 900, 1000, 1100, 1200, 1300, 35 1400, 1500, or more nucleotides, and in some embodiments the polynucleotide fragment includes about 801 to about 1596 nucleotides.

The term "variant" in reference to a polynucleotide can refer to a polynucleotide that is different from the reference 40 polynucleotide by one or more nucleic acids. In this regard, some polynucleotide variants have been codon optimized relative to a reference polynucleotide, and the polynucleotide variant can produce polypeptide more effectively in certain organisms relative to the reference polynucleotide. For 45 instance, in some embodiments a polynucleotide that includes the sequence of SEO ID NOS: 3, 4, 5, or 9 expresses, respectively, a polypeptide that includes the sequence of SEQ ID NOS: 4, 6, 8, or 10 more effectively (e.g., higher purity) in E. coli cells when compared to the polynucleotide having the 50 sequence of SEQ ID NO: 1. In this respect, a polynucleotide variant can have a different sequence than a reference polynucleotide without necessarily expressing a polypeptide that includes amino acid mutations relative to the reference polypeptide.

Unless otherwise indicated, a particular nucleic acid sequence also implicitly encompasses conservatively modified versions thereof (e.g., degenerate codon substitutions) and complementary sequences and as well as the sequence explicitly indicated. Specifically, degenerate codon substitu- 60 tions can be achieved by generating sequences in which the third position of one or more selected (or all) codons is substituted with mixed base and/or deoxyinosine residues (Batzer et al. (1991) Nucleic Acid Res 19:5081; Ohtsuka et al. (1985) J Biol Chem 260:2605 2608; Rossolini et al. (1994) 65 Mol Cell Probes 8:91 98). Thus, the term polynucleotide includes both deoxyribonucleic acid (DNA) and ribonucleic

acid, and therefore the term polynucleotide specifically includes complementary DNA as used herein.

In some embodiments the polynucleotide includes the nucleotide sequence of SEQ ID NO: 3. In some embodiments the polynucleotide includes the nucleotide sequence of SEQ ID NO: 5. In some embodiments the polynucleotide includes the nucleotide sequence of SEQ ID NO: 7. In some embodiments the polynucleotide includes the nucleotide sequence of SEQ ID NO: 9.

The presently-disclosed subject matter further includes a composition comprising starch, wherein the starch is from a plant expressing one of the polypeptides described herein. In some embodiments the polypeptide includes a thermophilic glucan phosphatase polypeptide. In some embodiments the polypeptides includes a laforin polypeptide, such as a Cmlaforin polypeptide. As discussed herein, organisms expressing the present polypeptides can produce starch with altered biophysical properties, which can be beneficial for manufacturing processes in various industries, including food, beverage, confectionary, plastic, paper, building, energy, textile, agriculture, and pharmaceutical industries.

The presently-disclosed subject matter further includes methods for processing starch, wherein processing can include degrading starch to smaller polysaccharides and/or 25 monosaccharides. In some embodiments the methods for processing starch comprise providing a starch, exposing the starch to a thermophilic glucan phosphatase, and collecting the starch that has been exposed to the thermophilic glucan phosphatase. In some embodiments the present polypeptides can be used in a method for processing starch that does not require harsh acids and harsh bases. Thus, the present methods can be more cost-effective and have a smaller environmental impact relative to known methods.

The term "providing" as used herein to refer to delivering, obtaining, procuring, or the like a substance. For instance, a polypeptide, a starch, or both can be provided by any means. In some embodiments the polypeptide is provided in an isolated form that can be exposed directly to a starch. In other embodiments an organism expresses the polypeptide, and the polypeptide is thereby provided by the organism. Likewise, starch can be provided by itself or can be provided within a plant.

In some embodiments the exposing step occurs within a plant. That is, a plant can express a thermophilic glucan phosphatase, and the thermophilic glucan phosphatase can be exposed to starch within the plant. On the other hand, in industrial applications a thermophilic glucan phosphatase can be provided in an isolated form, and can be exposed to a starch by mixing the two components in a container.

The term "collecting" is used herein to refer to any process or method where starch is used, obtained, cultivated, ingested, or the like. For example, in some embodiments starch is collected by harvesting a plant that comprises starch and processing the plant in order to obtain starch or other 55 sugars derived therefrom. In some embodiments, collecting refers to ingesting a plant that comprises a thermophilic glucan phosphatase. In other embodiments collecting refers to collecting starch that has been processed in a container with a thermophilic glucan phosphatase.

The presently-described starch processing methods do not suffer from the inability of amylases to access starch's water insoluble surface. Amylases degrade starch to maltose and glucose, but despite industry's 25 years of optimizing amylase to work under extreme conditions, amylase cannot degrade its own starch. In order to solubilize starch and to make it accessible to amylase, milling, extreme heat and acids and bases are required. One recent improved method for

60

processing starch is described in U.S. Provisional patent application Ser. No. 13/928,160, which is incorporated herein by reference, and which describes non-thermophilic glucan phosphatase variants for starch dephosphorylation.

However, in order to overcome problems in the art, the 5 present inventors discovered that use of the present polypeptides allows the starch to be processed without the milling and chemical treatments that are typically required. Thus, in some instances the present polypeptides can make a starch accessible to amylases for processing. The present methods can utilize polypeptides that include a thermophilic glucan phosphatase, such as laforin and the like. In specific embodiments the thermophilic glucan phosphatase includes the sequence of SEQ ID NO: 2, or a fragment and/or variant thereof.

Some methods further comprise exposing the starch to a kinase, an amylase, or both before the collecting step. Some embodied methods comprise a three-step exposing step wherein the starch is sequentially exposed to a thermophilic phosphatase, a kinase, and an amylase. In some embodied 20 methods glucan dikinases phosphorylate the outer starch surface and solubilize the outer surface allowing amylases to bind and degrade starch, and glucan phosphatases release phosphate and reset the cycle so that amylase-directed degradation can continue past the phosphate. Prior to the present 25 method, no known method used a combination of a thermophilic phosphatase, a kinase, and an amylase to process starch. Instead, prior to the present invention, harsh acids and bases were required to process starches. Accordingly, the present methods that use a one or a combination of one or 30 more different polypeptides are superior to prior know methods for processing starch.

In some embodiments of the present methods, the polypeptides are thermophiles and are capable of functioning under extreme conditions. For instance, Cm-laforin maintains its 35 activity from about 37° C. to about 75° C. and under a wide range of pH conditions, including about 3.0 pH to about 8.0 pH. Additionally, Cm-laforin has a relatively high specific activity and is relatively efficient at removing phosphate from the C3 and C6 position of starch compared to human laforin. 40 Lastly, Cm-laforin can increase amylase-directed degradation of starch.

The presently-disclosed subject matter also includes methods for making an isolated polypeptide. In some embodiments the method comprises providing a cell that includes at 45 least one of the presently-described polynucleotides, culturing the cell under conditions that permit the cell to produce a polypeptide encoded by the polynucleotide, and collecting the polypeptide. The cell can naturally include the polynucleotide or the polynucleotide can be introduced to the cell by 50 known methods. For instance, a vector can be utilized to introduce an embodiment of the present polynucleotides to the cell.

The cell is not particularly limited except that it must be capable of producing the polypeptide encoded by the poly-55 nucleotide. In some embodiments the polynucleotides can be sequence optimized for the production of a polypeptide in a particular cell, such as E. coli cells. The polypeptide produced by the cell can be collected by known means, thereby providing the isolated polypeptide.

EXAMPLES

The presently-disclosed subject matter is further illustrated by the following specific but non-limiting examples. Some 65 examples are prophetic. Some of the following examples may include compilations of data that are representative of data

gathered at various times during the course of development and experimentation related to the presently-disclosed subject matter.

Example 1

This Example describes the identification, cloning strategies, and purification of Cm-laforin polypeptides.

Laforin genes were identified in six protozoan genomes: Tetrahymena thermophile, Eimeria tenella, Toxoplasma gondii, Paramecium tetraurelia, Neospora caninum, and Cyanidioschyzon merolae. While the vertebrate laforin orthologs are similar, the protozoan laforin orthologs are about 20% to about 35% identical to Hs-laforin. Furthermore, some of these organisms live in extreme environments and likely have enzymes that function under harsh conditions. For example, the single-cell red algae C. merolae lives in highly acidic environments (i.e., pH<2) at temperatures of about 45° C. to about 60° C.

Five of the protozoan laforin orthologs were cloned to identify a laforin ortholog that was amenable to in vitro manipulation. To define the optimal constructs for recombinant protein expression, laforin primary sequences were analyzed from multiple species using a similar strategy that was successful for SEX4 (Vander Kooi et al., 2010). The strategy was to predict domain boundaries, secondary structure, regions of disorder, and regions of hydrophobicity for the polypeptides. Based on these data, the full-length laforin gene was cloned as well as multiple fragments (i.e., truncations) that remove the amino- and/or carboxy-terminus of the protein.

In the case of Cm-laforin, thedata, four Cm-laforin fragments were cloned into multiple bacterial expression vectors, including Met27 (truncates first 26 amino acids), a codon optimized for Ser157, a codon optimized for Gly258, and a codon optimized for Arg267. Cm-laforin proteins that were over 99% pure were expressed and purified were produced by tranforming BL21-CodonPlus Escherichia coli cells (Stratagene, La Jolla, Calif.) with expression vector. Cells were grown at 37° C. in 2xYT to an O.D.600 of 0.6-0.8, placed in ice for 20 minutes, were induced with 1 mM isopropyl β-Dthiogalactoside (IPTG), were grown at 16° C. for about 16 hours, and were harvested by centrifugation. Cells were lysed in 20 mM Tris-HCl (pH 7.5), 100 mM NaCl, and 2 mM dithiothreitol (DTT), centrifuged, and the proteins were purified using a Profinia IMAC column with Ni2+ beads (Bio-Rad, Hercules, Calif.) with a Profinia protein purification system (Bio-Rad). Polypeptides were eluted in lysis buffer containing 300 mM imidazole. Lastly, polypeptide was purified to homogeneity using a HiLoad 26/60 Superdex 200 size exclusion column (General Electric, Schenectady, N.Y.) (FIG. 4).

About 25 mg of soluble Cm-laforin per liter of E. coli cells was purified. The Cm-laforin was capable of being purified to 18 mg/ml, and this polypeptide was stable at 4° C. for over 1 week. Given the relatively high purity that was attained, Cmlaforin was selected for further analysis.

Example 2

This Example describes the cloning and identification of vertebrate laforin orthologs.

A total of seven vertebrate laforin orthologs that all robustly express in E. coli were identified, but only enough protein was purified to perform in vitro assays due to protein aggregation and precipitation. The vertebrate laforin orthologs were more than 85% similar at the amino acid level.

15

20

To test the glucan phosphatase activity of Cm-laforin, an assay based on the complex formation of malachite green with phospho-molybdate was implemented to measure inorganic phosphate release.

The glucan phosphatase assays against amylopectin, as determined via released free phosphate by malachite green detection, were performed as previously described with the following modifications (Sherwood, 2013). Reactions were performed in 20 μ L, reactions, containing 1× phosphatase buffer (0.1M sodium acetate, 0.05 M bis-Tris, 0.05 M Tris-HCl, pH 7.0, and 2 mM DTT), 100-1000 ng protein, and 45 μ g amylopectin. Amylopectin was solubilized using the Roach method (Wang, 2004). The reaction was stopped by the addition of 20 μ L, of 100 mM N-ethylmaleamide and 80 μ L, of malachite green reagent. Absorbance was measured at 620 m. The assay was performed with each protein six times or more to determine specific activity. Using this assay, it was found that Cm-laforin possessed nearly twice the specific activity of human-laforin, rat-laforin, or mouse-laforin (FIG. 3).

Example 3

This Example describes procedures conducted to characterize the thermophilic activity of Cm-laforin polypeptides.

To observe generic phosphatase activity, a phosphatase ²⁵ assay using the exogenous substrate para-nitrophenyl phosphate (pNPP) was implemented. Most DSPs can cleave pNPP, and this cleavage results in a colorimetric change. Since *C. merolae* is a thermophile, the phopshatase activity of Cm-laforin was observed under a variety of temperatures and ³⁰ pH conditions.

Previously-described phosphatase assays using pNPP were performed with the following modifications (Sherwood, 2013; Gentry, 2007). Hydrolysis of pNPP was performed in 50 μ L, reactions, containing 1× phosphatase buffer (0.1M ³⁵ sodium acetate, 0.05 M bis-Tris, 0.05 M Tris-HCl, and 2 mM DTT) at pH 3-8, 50 mM pNPP, and 1 μ g of enzyme at 37-75° C. for 15 minutes. The reaction was terminated by the addition of 200 μ L of 0.25 M NaOH, and absorbance was measured at 410 nm. The assay was performed with each protein ⁴⁰ six times or more to determine specific activity.

As shown in FIG. **5**A, Cm-laforin maintained its activity from 37° C.-80° C. In addition, Cm-laforin was active over a wide array of pH conditions from about 3.0 pH to about 8.0 pH (FIG. **5**B). On the other hand, SEX4 had a significantly ⁴⁵ lower specific activity against pNPP, and SEX4 did not maintain its activity over a wide-range of temperature or pH conditions (FIGS. **5**C and **5**D).

Example 4

This Example describes procedures that measured the position of the phosphate that is released off of glucose within starch by Cm-laforin.

Phosphate release from 33P-lableled starch granules was 55 performed as previously described with the following variations (Kotting, 2009). Phosphate-free starch granules were isolated from the *Arabidopsis* sex1-3 mutant. C6-33P-lableled starch was generated by phosphorylating the starch with ${}_{33}P$ - β -ATP at the C6-position by GWD followed by 60 washing until all unincorporated 33P had been removed, and non-radio-labeled ATP was added with PWD to phosphorylate the C3 position followed by dialyzing and precipitating out the ATP and PWD. C3-33P-labeled starch was generated by phosphorylating the starch with unlabeled ATP at the 65 C6-position by GWD followed by phosphorylation with ${}_{33}P$ - β R-ATP at the C3-position by PWD and washing until all

unincorporated 33P had been removed. These products were utilized as substrates in dephosphorylation assays with Cmlaforin or human laforin.

In both the C6-33P- and C3-33P-labeleled cases, the starch granules were phosphorylated at both positions; however, the 33P-label was located at only one or the other position. 33Pβ-ATP was obtained from Hartmann Analytic (Braunschweig, Germany). 150 ng of recombinant proteins were incubated in dephosphorylation buffer (100 mM sodium acetate, 50 mM bis-Tris, 50 mM Tris-HCl, pH 6.5, 0.05% [v/v] Triton X-100, 1 μ d/ μ L [w/v] BSA, and 2 mM DTT) with the C6- or C3-prelabeled starch (4 mg/mL) in a final volume of 150 μ L on a rotating wheel for 5 min at 25° C. The reaction was terminated by the addition of $50 \,\mu\text{L}$ of 10% SDS. The reaction tubes were then centrifuged at 13,000 rpm for 5 min to pellet the starch. 33P release into 150 µL of supernatant was determined using a 1900 TR liquid scintillation counter (Packard Elmer, Waltham, Mass.). The assay was performed with each protein six times to determine specific activity (FIG. 5E).

Example 5

This Example describes the Cm-laforin's ability to enhance starch degradation to a higher degree than SEX4.

Native Arabidopsis starch was treated with combinations of Beta-amylase3 (BAM3) (sweet potato, Sigma A7005, St. Louis, Mo.), isoamylase3 (ISA3) (Pseudomonas sp. Sigma 15284), GWD, and SEX4 or Cm-laforin. The total volume of the assays were 200 ul and consisted of 30 mM HEPES-KOH, pH 7.5, 5 mM MgCl₂, 5 mM CaCl₂, 1 mM ATP, 2.5 mg starch, +/-1 ul stock concentration BAM, +/-1.5 ul 1:50 stock dilution ISA, +/-4.5 ug GWD, +/-4.5 ug SEX4, and +/-4.5 ug laforin. The samples were incubated for 90 minutes with gentle agitation at room temperature. A 1.5 minute spin at 15,000 RPM was performed and the supernatant was collected, followed by another spin at 15,000 RPM for 5 minutes to remove any residual starch. Any remaining oligosaccharides were hydrolyzed, and glucose content in the supernatant was quantified using the Boehringer Mannheim assay kit (10716251035; Ingelheim am Rhein, Germany) per manufacturer's protocol.

As shown in FIG. **6**, β -amylases (BAM) and isoamylases (ISA) were responsible for degrading starch into glucose and maltose in planta. Phosphate-free starch was isolated from gwd/pwd deficient *Arabidopsis* plants and it was demonstrated that the activity of BAM3 and ISA3 are markedly enhanced in vitro when starch is phosphorylated by the glucan dikinase GWD.

Furthermore, the hydrolysis activity of BAMs and ISA in 50 combination with GWD was observed in the presence and absence of SEX4 and Cm-laforin. The activity of BAM3 and ISA3 increased in the presence of SEX4, and increased further in the presence of Cm-laforin (FIG. **6**).

While the terms used herein are believed to be well understood by one of ordinary skill in the art, the definitions set forth herein are provided to facilitate explanation of the presently-disclosed subject matter.

Unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which the presentlydisclosed subject matter belongs. Although any methods, devices, and materials similar or equivalent to those described herein can be used in the practice or testing of the presentlydisclosed subject matter, representative methods, devices, and materials are now described.

Following long-standing patent law convention, the terms "a", "an", and "the" refer to "one or more" when used in this

10

25

application, including the claims. Thus, for example, reference to "a cell" includes a plurality of such cells, and so forth.

Unless otherwise indicated, all numbers expressing quantities of ingredients, properties such as reaction conditions, and so forth used in the specification and claims are to be understood as being modified in all instances by the term "about". Accordingly, unless indicated to the contrary, the numerical parameters set forth in this specification and claims are approximations that can vary depending upon the desired properties sought to be obtained by the presently-disclosed subject matter.

As used herein, the term "about," when referring to a value or to an amount of mass, weight, time, volume, concentration or percentage is meant to encompass variations of in some embodiments $\pm 50\%$, in some embodiments $\pm 40\%$, in some embodiments $\pm 30\%$, in some embodiments $\pm 20\%$, in some embodiments $\pm 10\%$, in some embodiments $\pm 5\%$, in some embodiments $\pm 1\%$, in some embodiments $\pm 0.5\%$, and in some embodiments $\pm 0.1\%$ from the specified amount, as such variations are appropriate to perform the disclosed method.

As used herein, ranges can be expressed as from "about" one particular value, and/or to "about" another particular value. It is also understood that there are a number of values disclosed herein, and that each value is also herein disclosed as "about" that particular value in addition to the value itself. For example, if the value "10" is disclosed, then "about 10" is also disclosed. It is also understood that each unit between two particular units are also disclosed. For example, if 10 and 15 are disclosed, then 11, 12, 13, and 14 are also disclosed.

Throughout this document, various references are mentioned. All such references, including those listed below, are incorporated herein by reference.

REFERENCES

- EDNER, et al, "Glucan, Water Dinkinase Activity Stimulates Breakdown of Starch Granules by Plastidial β-Amylases", Plant Physiology, vol. 145, September 2007, pages 17-28.
- GENTRY, et al, "The phosphatase laforin crosses evolutionary boundaries and links carbohydrate metabolism to neuronal disease", JCB, vol. 178, no. 3, Jul. 30, 2007, pages 477-488.

14

- HAKI, et al, "Developments in industrial important thermostable enzymes: a review", Bioresource Technology, vol. 89, 2003, pages 17-34.
- JOBLING, Steve, "Improving starch for food and industrial applications", Current Opinion in Plant Biology, vol. 7, 2004, pages 210-218.
- KELLY, et al, "Stach and α-glucan acting enzymes, modulating their properties by directed evolution", Journal of Biotechnology, vol. 140, 2009, pages 184-193.
- KOTTING, et al, "STARCH-EXCESS4 Is a Laforin-Like Phosphoglucan Phosphatase Required for Starch Degradation in *Arabidopsis thaliana*", The Plant Cell, vol. 21, January 2009, pages 334-346.
- LEEMHUIS, et al, "Engineering of cyclodextrin glucanotransferases and the impact for biotechnical applications", Appl Microbiol Biotechnol, vol. 85, 2010, pages 823-835.
- 8. LESLIE, Mitch, "Catching killer carbs", JCB, vol. 178, no. 3, 2007, pages 338-339.
- MORELL, et al, "Towards the rational design of cereal starches", Current Opinion in Plant Biology, vol. 8, 2005, pages 204-210.
- 10. NIELSEN, et al, "Protein engineering of bacterial α-amylases", Biochimica et Biophysica Acta, vol. 1543, 2000, pages 253-274.
- SANCHEZ, et al, "Trends in biotechnological production of fuel ethanol from different feedstocks", Bioresource Technology, vol. 99, 2008, pages 5270-5295.
- 12. SANTELIA, et al, "Progress in *Arabidopsis* starch research and potential biotechnological applications", Current Opinion in Biotechnology, vol. 22, 2010, pages 1-10.
- SHERWOOD, et al, A malachite green-based assay to assess glucan phosphatase activity." Analyical Biochemistry, vol. 435, 2013, pages 54-56.
- VANDER KOOI, et al, "Structural basis for the glucan phosphatase activity of Starch Excess4", PNAS, vol. 107, pages 15379-84.
- WANG, et al, "Glycogen and related polysaccharides inhibit the laforin dual-specificity protein phosphatase." Biochemical and Biophysical Research Communications, vol. 325, 2004, pages 726-730.

SEQUENCE LISTING

<160> NUMBER OF SEQ ID NOS: 10 <210> SEQ ID NO 1 <211> LENGTH: 1599 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: C. merolae laforin full-length <400> SEOUENCE: 1 atggcgcgta tacgaacatc ggatcgccgg aacacaaacg accaggcagg ctcggaaagc 60 cggcatcggg tgccgtcgat ggcaagagcg ccagctgctg attcgtctgg tgcgcagtca 120 acaccageeg caeggegtge tteegaggga gtetetgtag etgageetee gteaaageea 180 gctgctgatt cgtctggtgc gcagtcaaca ccagccgcac ggcgtgcttc cgagggagtc 240 totqtaqctq qqcctccatc aaaqccaqct qccqattcqt ctqqtqcqca qtcaacacca 300 gccgcacggt ttgcatccga gggtgtctct gtacctgagc ctccgtcaaa gccagctgct 360 gattegtetg gtgegeagte aacaecagee geacggggtg etteegagga tatetetgta 420

US 9,222,114 B1

15

cctgggcctc									
	cttcag	Jacat t	gcggacac	g ato	tcaaaga	atgat	cgaag	cgtaacccc	g 480
acgattccga	ctttat	tccg c	gtctacto	c cac	acggagt	ttggc	gatgc	tgtcgtcgc	c 540
gctggtagtc	acgaca	aatt g	ggcaacto	g gag	Jecegega	aagcg	ctccg	gctccgtca	z 600
caatgccaag	tggata	icacc g	ttccgtga	c tgo	tgggaag	gcgag	gtaga	ccttgtacc	c 660
gaaacaagct	tcgagt	tcaa a	ttcgtgcg	t ctt	ataggcg	gagat	ccgca	gcgtgcgct	c 720
tgggaaaccg	gaccca	laccg a	agagccgt	g ato	cagagaa	actcg	aagga	cggctgcct	g 780
attgaagtgg	aatggg	lagcg t	acgcgtgt	g cto	ytteteaa	tatac	tatcc	taccaaaga	g 840
aagcagcatc	tctgtg	itcac t	ggcgatct	t ccç	gaaatcg	gtcgg	tgggt	agaaccgggi	z 900
ccagtaccca	tggccc	tctc a	actactga	g gag	gcgtttgg	aaaca	ggagg	caagggccg	a 960
cgttggtcct	tgacgg	itttc a	gtgccato	c aco	ıgtgggca	aattc	gccta	tcgctatgt	g 1020
ctagtcgacg	ataacc	gcca g	caaacgat	c tgg	gaacgag	aaccg	aatcg	ctatgcaac	a 1080
ctagaacgag	cggtga	lacgg g	cgcctcga	a tgt	ttcgatg	caaat	tttgt	cgcttcgtt	a 1140
gaatttgatg	aaatat	gtcc g	gacattta	c ata	agggccct	accca	caaac	tccagagca	1200
gtcgaaatga	tgcatg	laggc g	gggattac	g gct	gttttga	attta	cagac	cgatgagga	2 1260
tttgcacacc	gcagta	ittee e	tggtcgac	g cto	jatggaga	catat	acagc	actagagat	g 1320
caagtcatcc	gttgtc	cgat t	ccggattt	t aat	gcggagg	cgctc	atgca	gttgettee	g 1380
gatgccgtac	gcgctc	ttga t	gcggcgct	c aag	ıgcgaagc	gcgtc	gtcta	cgtgcactg	1440
accgcaggaa	tgggto	gagc g	cccgctgt	a gtt	gtegeet	acctc	gtgtg	gcgccgcgg	c 1500
atgacgctgg	aggatg	Icctt g	tcgcacgt	t aaa	igcacgtc	gtgct	gtggc	cgcgccgaat	: 1560
gtcaccgtat	tggaaa	aggt t	cttcgtaa	t ccc	ttgtga				1599
<210> SEQ]	<u>ר א</u> ס 2								
<211> LENGT <212> TYPE: <213> ORGAN <220> FEATU <223> OTHER	H: 532 PRT ISM: A RE: INFOR	Artific MATION	ial Sequ : C. mer	ence olae	laforin	full-	length	polypept:	ide
<211> LENGT <212> TYPE: <213> ORGAN <220> FEATU <223> OTHEF <400> SEQUE	TH: 532 PRT ISM: A RE: INFOR	artific MATION	ial Sequ : C. mer	ence olae	laforin	full-	length	polypept.	ide
<211> LENGT <212> TYPE: <213> ORGAN <220> FEATU <223> OTHEF <400> SEQUE Met Ala Arg 1	TH: 532 PRT IISM: A RE: INFOR NCE: 2 INCE: 2	MATION MATION	ial Sequ : C. mer Ser Asp	ence olae Arg	laforin Arg Asn 10	full- Thr A	length sn Asp	gln Ala	ide
<211> LENGT <212> TYPE: <213> ORGAN <220> FEATU <223> OTHEF <400> SEQUE Met Ala Arc 1 Gly Ser Glu	H: 532 PRT IISM: A RE: INFOR NCE: 2 INCE: 2 I ILE A 5 I Ser A 20	Artific MATION arg Thr arg His	ial Sequ : C. mer Ser Asp Arg Val	ence olae Arg Pro 25	laforin Arg Asn 10 Ser Met	full- Thr A Ala A	length sn Asp rg Ala 30	Gln Ala 15 Pro Ala	ide
<211> LENGT <212> TYPE: <213> ORGAN <220> FEATT <223> OTHER <400> SEQUE Met Ala Arc 1 Gly Ser Glu Ala Asp Sen 35	I NO 2 PRT IISM: A RE: INFOR NCE: 2 I ILE A 5 Ser A 20	Artific MATION arg Thr arg His Hy Ala	ial Sequ : C. mer Ser Asp Arg Val Gln Ser 40	ence olae Arg Pro 25 Thr	laforin Arg Asn 10 Ser Met Pro Ala	full- Thr A Ala A Ala A 4	length sn Asp rg Ala 30 rg Arg 5	polypept. Gln Ala 15 Pro Ala Ala Ser	ide
<pre><211> LENGT <212> TYPE: <213> ORGAN <220> FEATU <223> OTHEF <400> SEQUE Met Ala Arc 1 Gly Ser Glu Ala Asp Ser 35 Glu Gly Val 50</pre>	H: 532 PRT IISM: A RE: INFOR NCE: 2 IIE A Ser A 20 Ser G . Ser V	Artific MATION Arg Thr Arg His Sly Ala Cal Ala	ial Sequ : C. mer Ser Asp Arg Val Gln Ser 40 Glu Prc 55	ence olae Arg Pro 25 Thr Pro	laforin Arg Asn 10 Ser Met Pro Ala Ser Lys	full- Thr A Ala A Ala A 4 Pro A 60	length sn Asp rg Ala 30 rg Arg 5 .la Ala	polypept. Gln Ala 15 Pro Ala Ala Ser Asp Ser	ide
<pre><211> LENGT <212> TYPE: <213> ORGAN <220> FEATU <223> OTHEF <400> SEQUE Met Ala Arg 1 Gly Ser Glu Ala Asp Ser 35 Glu Gly Val 50 Ser Gly Ala 65</pre>	H: 532 PRT IISM: A RE: IISM: A RE: IIFOR NCE: 2 IIE A 5 Ser A 20 Ser G Ser V Ser V Ser V	artific MATION arg Thr arg His Sly Ala 'al Ala cer Thr 70	ial Sequ : C. mer Ser Asp Arg Val Gln Ser 40 Glu Pro 55 Pro Ala	ence olae Arg 25 Thr Pro 25	laforin Arg Asn 10 Ser Met Pro Ala Ser Lys Arg Arg 75	full- Thr A Ala A Ala A 4 Pro A 60 Ala S	length sn Asp rg Ala 30 rg Arg 5 la Ala er Glu	polypept. Gln Ala 15 Pro Ala Ala Ser Asp Ser Gly Val 80	ide
<pre><211> LENGT <12> TYPE: <213> ORGAN <220> FEAT <223> OTHEF <400> SEQUE Met Ala Arcs 1 Gly Ser Glu Ala Asp Sen 35 Glu Gly Val 50 Ser Gly Ala 65 Ser Val Ala</pre>	H: 532 PRT IISM: A RE: INFOR NCE: 2 I ILE A 20 Ser A 20 Ser C Ser V Gln S	artific MATION arg Thr arg His aly Ala al Ala ar Thr 70 Pro Pro	ial Sequ : C. mer Ser Asp Arg Val Gln Ser 40 Glu Pro 55 Pro Ala Ser Lya	ence olae Pro 25 Thr Pro Ala	laforin Arg Asn 10 Ser Met Pro Ala Ser Lys Arg Arg 75 Ala Ala 90	full- Thr A Ala A Ala A Pro A 60 Ala S Asp S	length sn Asp rg Ala 30 rg Arg 5 la Ala er Glu er Ser	polypept Gln Ala 15 Pro Ala Ala Ser Asp Ser Gly Val 80 Gly Ala 95	ide
<pre><211> LENGT <212> TYPE: <213> ORGAN <220> FEATU <223> OTHEF <400> SEQUE Met Ala Arg 1 Gly Ser Glu Ala Asp Ser 35 Glu Gly Val 50 Ser Gly Ala 65 Ser Val Ala Gln Ser Thr</pre>	H: 532 PRT IISM: A RE: INFOR NCE: 2 IIE A Ser A 20 Ser G Ser V Gln S Gln S Gly P 8 Pro A 100	artific MATION arg Thr arg His Sly Ala fal Ala fal Ala far Thr 70 Pro Pro 55 Ala Ala	ial Sequ : C. mer Ser Asp Arg Val Gln Ser 40 Glu Pro 55 Pro Ala Ser Lys Arg Phe	ence olae Arg Pro 25 Thr Pro Ala Pro	laforin Arg Asn 10 Ser Met Pro Ala Ser Lys Arg Arg 75 Ala Ala 90 Ser Glu	full- Thr A Ala A Ala A Pro A 60 Ala S Asp S Gly V	length sn Asp rg Ala 30 rg Arg 5 la Ala er Glu er Ser fal Ser 110	polypept. Gln Ala 15 Pro Ala Ala Ser Asp Ser Gly Val 80 Gly Ala 95 Val Pro	ide
<pre><211> LENGT <212> TYPE: <213> ORGAN <220> FEATU <223> OTHEF <400> SEQUE Met Ala Arc 1 Gly Ser Glu Ala Asp Ser 35 Glu Gly Val 50 Ser Gly Ala 65 Ser Val Ala Gln Ser Thr Glu Pro Pro 115</pre>	H: 532 PRT IISM: A RE: INFOR NCE: 2 I ILE A 20 Ser A 20 Ser Q Ser V Gln S Gly P 8 OF A 100 Ser L	artific MATION arg Thr arg His arg His arg His arg His arg His arg His arg Thr 70 Pro Pro 25 Ala Ala Ala Ala	ial Sequ : C. mer Ser Asy Arg Val Gln Ser 40 Glu Pro 55 Pro Ala Ser Lys Arg Phe Ala Ala 120	ence olae Pro 25 Thr Pro Ala Pro 4 Pro 25	laforin Arg Asn 10 Ser Met Pro Ala Ser Lys Arg Arg 75 Ala Ala 90 Ser Glu Ser Ser	full- Thr A Ala A Ala A Pro A 60 Ala S Asp S Gly V Gly A 1	length sn Asp rg Ala 30 rg Arg 5 la Ala er Glu er Ser fal Ser 110 la Gln 25	polypept. Gln Ala Pro Ala Ala Ser Asp Ser Gly Val 80 Gly Ala 95 Val Pro Ser Thr	ide
<pre><211> LENGT <212> TYPE: <213> ORGAN <220> FEATU <223> OTHEF <400> SEQUE Met Ala Arg 1 Gly Ser Glu Ala Asp Ser 35 Glu Gly Val 50 Ser Gly Ala 65 Ser Val Ala Gln Ser Thr Glu Pro Pro 115 Pro Ala Ala 130</pre>	H: 532 PRT IISM: A RE: INFOR NCE: 2 I ILE A Ser A 20 Ser G Ser G Ser V Gln S Gln S Gly P 8 Pro A 100 Ser L Arg G	artific MATION arg Thr arg His arg Thr 70 Pro Pro 55 Ala Ala ays Pro ally Ala	ial Sequ : C. mer Ser Asp Arg Val Gln Ser 40 Glu Pro 55 Pro Ala Ser Lys Arg Phe Ala Ala 120 Ser Glu 135	ence olae Pro 25 Thr Pro Ala 105 Asp Asp	laforin Arg Asn 10 Ser Met Pro Ala Ser Lys Arg Arg 75 Ala Ala 90 Ser Glu Ser Ser Ile Ser	full- Thr A Ala A Ala A Pro A 60 Ala S Asp S Gly V Gly A 1 Val P 140	length sn Asp rg Ala 30 rg Arg 5 la Ala er Glu er Glu fer Ser 110 la Gln 25 ro Gly	polypept. Gln Ala 15 Pro Ala Ala Ser Asp Ser Gly Val 80 Gly Ala 95 Val Pro Ser Thr Pro Pro	ide

145					150					155					160
Thr	Ile	Pro	Thr	Leu 165	Phe	Arg	Val	Tyr	Cys 170	His	Thr	Glu	Phe	Gly 175	Asp
Ala	Val	Val	Ala 180	Ala	Gly	Ser	His	Asp 185	Lys	Leu	Gly	Asn	Trp 190	Glu	Pro
Ala	Lys	Ala 195	Leu	Arg	Leu	Arg	His 200	Gln	Сүз	Gln	Val	Asp 205	Thr	Pro	Phe
Arg	Asp 210	Суз	Trp	Glu	Gly	Glu 215	Val	Asp	Leu	Val	Pro 220	Glu	Thr	Ser	Phe
Glu 225	Phe	ГЛа	Phe	Val	Arg 230	Leu	Ile	Gly	Gly	Asp 235	Pro	Gln	Arg	Ala	Leu 240
Trp	Glu	Thr	Gly	Pro 245	Asn	Arg	Arg	Ala	Val 250	Ile	Gln	Arg	Asn	Ser 255	Lys
Asp	Gly	Суз	Leu 260	Ile	Glu	Val	Glu	Trp 265	Glu	Arg	Thr	Arg	Val 270	Leu	Phe
Ser	Ile	Tyr 275	Tyr	Pro	Thr	ГÀа	Glu 280	Lys	Gln	His	Leu	Суз 285	Val	Thr	Gly
Asp	Leu 290	Pro	Glu	Ile	Gly	Arg 295	Trp	Val	Glu	Pro	Gly 300	Pro	Val	Pro	Met
Ala 305	Leu	Ser	Thr	Thr	Glu 310	Glu	Arg	Leu	Glu	Thr 315	Gly	Gly	Lys	Gly	Arg 320
Arg	Trp	Ser	Leu	Thr 325	Val	Ser	Val	Pro	Ser 330	Thr	Val	Gly	Lys	Phe 335	Ala
Tyr	Arg	Tyr	Val 340	Leu	Val	Asp	Asp	Asn 345	Arg	Gln	Gln	Thr	Ile 350	Trp	Glu
Arg	Glu	Pro 355	Asn	Arg	Tyr	Ala	Thr 360	Leu	Glu	Arg	Ala	Val 365	Asn	Gly	Arg
Leu	Glu 370	Сүз	Phe	Asp	Ala	Asn 375	Phe	Val	Ala	Ser	Leu 380	Glu	Phe	Asp	Glu
Ile 385	Cys	Pro	Asp	Ile	Tyr 390	Ile	Gly	Pro	Tyr	Pro 395	Gln	Thr	Pro	Glu	His 400
Val	Glu	Met	Met	His 405	Glu	Ala	Gly	Ile	Thr 410	Ala	Val	Leu	Asn	Leu 415	Gln
Thr	Asp	Glu	Asp 420	Phe	Ala	His	Arg	Ser 425	Ile	Pro	Trp	Ser	Thr 430	Leu	Met
Glu	Thr	Tyr 435	Thr	Ala	Leu	Glu	Met 440	Gln	Val	Ile	Arg	Cys 445	Pro	Ile	Pro
Asp	Phe 450	Asn	Ala	Glu	Ala	Leu 455	Met	Gln	Leu	Leu	Pro 460	Aap	Ala	Val	Arg
Ala 465	Leu	Asp	Ala	Ala	Leu 470	Lys	Ala	Lys	Arg	Val 475	Val	Tyr	Val	His	Cys 480
Thr	Ala	Gly	Met	Gly 485	Arg	Ala	Pro	Ala	Val 490	Val	Val	Ala	Tyr	Leu 495	Val
Trp	Arg	Arg	Gly 500	Met	Thr	Leu	Glu	Asp 505	Ala	Leu	Ser	His	Val 510	Lys	Ala
Arg	Arg	Ala 515	Val	Ala	Ala	Pro	Asn 520	Val	Thr	Val	Leu	Glu 525	Lys	Val	Leu
Arg	Asn 530	Pro	Leu												
-				_											
<21	0 > SI	EQ II	о и с	3											

LENGTH: 1521
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence

<220> FEATURE:

-continued

<223> OTHER	R INFORMATIO	DN: C. merol	lae laforin	Met 27 fraç	gment	
<400> SEQUI	ENCE: 3					
atggcaagag	cgccagctgc	tgattcgtct	ggtgcgcagt	caacaccagc	cgcacggcgt	60
gcttccgagg	gagtetetgt	agctgagcct	ccgtcaaagc	cagctgctga	ttcgtctggt	120
gcgcagtcaa	caccagccgc	acggcgtgct	tccgagggag	tctctgtagc	tgggcctcca	180
tcaaagccag	ctgccgattc	gtctggtgcg	cagtcaacac	cagccgcacg	gtttgcatcc	240
gagggtgtct	ctgtacctga	gcctccgtca	aagccagctg	ctgattcgtc	tggtgcgcag	300
tcaacaccag	ccgcacgggg	tgcttccgag	gatatctctg	tacctgggcc	tccttcagac	360
attgcggaca	cgatctcaaa	gaatgatcga	agcgtaaccc	cgacgattcc	gactttattc	420
cgcgtctact	gccacacgga	gtttggcgat	gctgtcgtcg	ccgctggtag	tcacgacaaa	480
ttgggcaact	gggagcccgc	gaaagcgctc	cggctccgtc	atcaatgcca	agtggataca	540
ccgttccgtg	actgctggga	aggcgaggta	gaccttgtac	ccgaaacaag	cttcgagttc	600
aaattcgtgc	gtcttatagg	cggagatccg	cagcgtgcgc	tctgggaaac	cggacccaac	660
cgaagagccg	tgatccagag	aaactcgaag	gacggctgcc	tgattgaagt	ggaatgggag	720
cgtacgcgtg	tgctgttctc	aatatactat	cctaccaaag	agaagcagca	tctctgtgtc	780
actggcgatc	ttccggaaat	cggtcggtgg	gtagaaccgg	gtccagtacc	catggccctc	840
tcaactactg	aggagcgttt	ggaaacagga	ggcaagggcc	gacgttggtc	cttgacggtt	900
tcagtgccat	ccacggtggg	caaattcgcc	tatcgctatg	tgctagtcga	cgataaccgc	960
cagcaaacga	tctgggaacg	agaaccgaat	cgctatgcaa	cactagaacg	agcggtgaac	1020
gggcgcctcg	aatgtttcga	tgcaaatttt	gtcgcttcgt	tagaatttga	tgaaatatgt	1080

getteegagg gagtetetgt agetgageet eegteaaage e gcgcagtcaa caccagccgc acggcgtgct tccgagggag t tcaaagccag ctgccgattc gtctggtgcg cagtcaacac c gagggtgtet etgtacetga geeteegtea aageeagetg e tcaacaccag ccgcacgggg tgcttccgag gatatctctg t attgeggaca egateteaaa gaatgatega agegtaacee e cgcgtctact gccacacgga gtttggcgat gctgtcgtcg c ttgggcaact gggagcccgc gaaagcgctc cggctccgtc a ccgttccgtg actgctggga aggcgaggta gaccttgtac c aaattegtge gtettatagg eggagateeg eagegtgege t cqaaqaqccq tqatccaqaq aaactcqaaq qacqqctqcc t cqtacqcqtq tqctqttctc aatatactat cctaccaaaq a actggcgatc ttccggaaat cggtcggtgg gtagaaccgg g tcaactactg aggagcgttt ggaaacagga ggcaagggcc g tcagtgccat ccacggtggg caaattcgcc tatcgctatg t cagcaaacga tctgggaacg agaaccgaat cgctatgcaa c gggcgcctcg aatgtttcga tgcaaatttt gtcgcttcgt t ccggacattt acatagggcc ctacccacaa actccagagc atgtcgaaat gatgcatgag 1140 gcggggatta cggctgtttt gaatttacag accgatgagg actttgcaca ccgcagtatt 1200 ccctggtcga cgctgatgga gacatataca gcactagaga tgcaagtcat ccgttgtccg 1260 attccggatt ttaatgcgga ggcgctcatg cagttgcttc cggatgccgt acgcgctctt 1320 gatgcggcgc tcaaggcgaa gcgcgtcgtc tacgtgcact gtaccgcagg aatgggtcga 1380 gcgcccgctg tagttgtcgc ctacctcgtg tggcgccgcg gcatgacgct ggaggatgcc 1440 ttgtcgcacg ttaaagcacg tcgtgctgtg gccgcgccga atgtcaccgt attggaaaag 1500 gttcttcgta atcccttgtg a 1521

<210> SEQ ID NO 4 <211> LENGTH: 506 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: C. merolae laforin Met 27 polypeptide <400> SEOUENCE: 4 Met Ala Arg Ala Pro Ala Ala Asp Ser Ser Gly Ala Gln Ser Thr Pro 1 5 10 15 Ala Ala Arg Arg Ala Ser Glu Gly Val Ser Val Ala Glu Pro Pro Ser 20 25 30 Lys Pro Ala Ala Asp Ser Ser Gly Ala Gln Ser Thr Pro Ala Ala Arg 35 40 45 Arg Ala Ser Glu Gly Val Ser Val Ala Gly Pro Pro Ser Lys Pro Ala 55 50 60

Ala 65	Aab	Ser	Ser	Gly	Ala 70	Gln	Ser	Thr	Pro	Ala 75	Ala	Arg	Phe	Ala	Ser 80
Glu	Gly	Val	Ser	Val 85	Pro	Glu	Pro	Pro	Ser 90	Lys	Pro	Ala	Ala	Asp 95	Ser
Ser	Gly	Ala	Gln 100	Ser	Thr	Pro	Ala	Ala 105	Arg	Gly	Ala	Ser	Glu 110	Asp	Ile
Ser	Val	Pro 115	Gly	Pro	Pro	Ser	Asp 120	Ile	Ala	Asp	Thr	Ile 125	Ser	Lys	Asn
Asp	Arg 130	Ser	Val	Thr	Pro	Thr 135	Ile	Pro	Thr	Leu	Phe 140	Arg	Val	Tyr	Суз
His 145	Thr	Glu	Phe	Gly	Asp 150	Ala	Val	Val	Ala	Ala 155	Gly	Ser	His	Asp	Lys 160
Leu	Gly	Asn	Trp	Glu 165	Pro	Ala	Lys	Ala	Leu 170	Arg	Leu	Arg	His	Gln 175	Сув
Gln	Val	Asp	Thr 180	Pro	Phe	Arg	Asp	Cys 185	Trp	Glu	Gly	Glu	Val 190	Asp	Leu
Val	Pro	Glu 195	Thr	Ser	Phe	Glu	Phe 200	Lys	Phe	Val	Arg	Leu 205	Ile	Gly	Gly
Asp	Pro 210	Gln	Arg	Ala	Leu	Trp 215	Glu	Thr	Gly	Pro	Asn 220	Arg	Arg	Ala	Val
Ile 225	Gln	Arg	Asn	Ser	Lys 230	Asp	Gly	Cys	Leu	Ile 235	Glu	Val	Glu	Trp	Glu 240
Arg	Thr	Arg	Val	Leu 245	Phe	Ser	Ile	Tyr	Tyr 250	Pro	Thr	Lys	Glu	Lys 255	Gln
His	Leu	Сув	Val 260	Thr	Gly	Asp	Leu	Pro 265	Glu	Ile	Gly	Arg	Trp 270	Val	Glu
Pro	Gly	Pro 275	Val	Pro	Met	Ala	Leu 280	Ser	Thr	Thr	Glu	Glu 285	Arg	Leu	Glu
Thr	Gly 290	Gly	Lys	Gly	Arg	Arg 295	Trp	Ser	Leu	Thr	Val 300	Ser	Val	Pro	Ser
Thr 305	Val	Gly	Lys	Phe	Ala 310	Tyr	Arg	Tyr	Val	Leu 315	Val	Asp	Asp	Asn	Arg 320
Gln	Gln	Thr	Ile	Trp 325	Glu	Arg	Glu	Pro	Asn 330	Arg	Tyr	Ala	Thr	Leu 335	Glu
Arg	Ala	Val	Asn 340	Gly	Arg	Leu	Glu	Cys 345	Phe	Asp	Ala	Asn	Phe 350	Val	Ala
Ser	Leu	Glu 355	Phe	Asp	Glu	Ile	Сув 360	Pro	Asp	Ile	Tyr	Ile 365	Gly	Pro	Tyr
Pro	Gln 370	Thr	Pro	Glu	His	Val 375	Glu	Met	Met	His	Glu 380	Ala	Gly	Ile	Thr
Ala 385	Val	Leu	Asn	Leu	Gln 390	Thr	Asp	Glu	Asp	Phe 395	Ala	His	Arg	Ser	Ile 400
Pro	Trp	Ser	Thr	Leu 405	Met	Glu	Thr	Tyr	Thr 410	Ala	Leu	Glu	Met	Gln 415	Val
Ile	Arg	Cys	Pro 420	Ile	Pro	Asp	Phe	Asn 425	Ala	Glu	Ala	Leu	Met 430	Gln	Leu
Leu	Pro	Asp 435	Ala	Val	Arg	Ala	Leu 440	Aap	Ala	Ala	Leu	Lys 445	Ala	Lys	Arg
Val	Val 450	Tyr	Val	His	Сув	Thr 455	Ala	Gly	Met	Gly	Arg 460	Ala	Pro	Ala	Val
Val 465	Val	Ala	Tyr	Leu	Val 470	Trp	Arg	Arg	Gly	Met 475	Thr	Leu	Glu	Asp	Ala 480
Leu	Ser	His	Val	Lys	Ala	Arg	Arg	Ala	Val	Ala	Ala	Pro	Asn	Val	Thr

485	490	495	
Val Leu Glu Lys Val Leu Arg Asn Pro 500 505	Leu		
<210> SEQ ID NO 5 <211> LENGTH: 1140 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: C. merolae	laforin	Ser157 fragment polypep	tide
<400> SEQUENCE: 5			
atgtcagtta ccccgaccat cccgacgctg tt	ccgtgttt	attgtcacac cgaatttggc	60
gacgcagttg ttgccgctgg ctcccatgat aa	actgggta	actgggaacc ggcaaaagct	120
ctgcgtctgc gccatcagtg ccaagttgat ac	cccgttcc	gtgactgttg ggaaggcgaa	180
gtggatctgg ttccggaaac gagttttgaa tt	taaattcg	tccgtctgat tggcggtgac	240
ccgcagcgcg cactgtggga aaccggtccg aa	.ccgtcgcg	ctgtgattca acgcaatagc	300
aaagatggct gcctgatcga agttgaatgg ga	acgtacgc	gcgtcctgtt ttctatctac	360
tacccgacca aagaaaaaca gcacctgtgt gt	tacgggcg	acctgccgga aatcggtcgt	420
tgggtcgaac cgggtccggt gccgatggcg ct	gtcaacca	cggaagaacg cctggaaacc	480
ggcggtaaag gtcgtcgctg gtcgctgacc gt	cagcgtgc	cgtctacggt gggcaaattc	540
gcctatcgtt acgttctggt cgatgacaac cg	ccagcaaa	ccatttggga acgtgaaccg	600
aatcgctatg caacgctgga acgtgctgtc aa	.cggtcgcc	tggaatgctt cgatgcaaat	660
tttgtggctt ccctggaatt tgatgaaatc tg	tccggaca	tttatatcgg tccgtacccg	720
cagaccccgg aacatgtgga aatgatgcac ga	agcgggca	ttaccgccgt tctgaacctg	780
caaacggatg aagacttcgc ccatcgtagt at	cccgtggt	ccaccctgat ggaaacctac	840
acggcactgg aaatgcaagt gattcgctgc cc	gatcccgg	attttaatgc ggaagccctg	900
atgcaactgc tgccggatgc agtgcgtgcc ct	ggacgcag	ccctgaaagc aaaacgcgtg	960
gtttatgttc attgtaccgc gggcatgggt cg	tgcaccgg	ctgtcgtggt tgcgtacctg	1020
gtttggcgtc gcggcatgac gctggaagat gc	gctgagcc	acgtcaaagc ccgccgtgct	1080
gttgccgccc cgaatgtgac ggtgctggaa aa	agttctgc	gtaaccogot gtaactogag	1140
<210> SEQ ID NO 6 <211> LENGTH: 377 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: C. merolae	laforin	Ser157 fragment polypep	tide
<400> SEQUENCE: 6			
Met Ser Val Thr Pro Thr Ile Pro Thr 1 5	Leu Phe 10	Arg Val Tyr Cys His 15	
Thr Glu Phe Gly Asp Ala Val Val Ala 20 25	Ala Gly	Ser His Asp Lys Leu 30	
Gly Asn Trp Glu Pro Ala Lys Ala Leu 35 40	. Arg Leu	Arg His Gln Cys Gln 45	
Val Asp Thr Pro Phe Arg Asp Cys Trp 50 55	Glu Gly	Glu Val Asp Leu Val 60	
Pro Glu Thr Ser Phe Glu Phe Lys Phe 65 70	Val Arg 75	Leu Ile Gly Gly Asp 80	
Pro Gln Arg Ala Leu Trp Glu Thr Gly	· Pro Asn	Arg Arg Ala Val Ile	

85 90 95
Gln Arg Asn Ser Lys Asp Gly Cys Leu Ile Glu Val Glu Trp Glu Arg 100 105 110
Thr Arg Val Leu Phe Ser Ile Tyr Tyr Pro Thr Lys Glu Lys Gln His 115 120 125
Leu Cys Val Thr Gly Asp Leu Pro Glu Ile Gly Arg Trp Val Glu Pro 130 135 140
Gly Pro Val Pro Met Ala Leu Ser Thr Thr Glu Glu Arg Leu Glu Thr 145 150 155 160
Gly Gly Lys Gly Arg Arg Trp Ser Leu Thr Val Ser Val Pro Ser Thr 165 170 175
Val Gly Lys Phe Ala Tyr Arg Tyr Val Leu Val Asp Asp Asn Arg Gln 180 185 190
Gln Thr Ile Trp Glu Arg Glu Pro Asn Arg Tyr Ala Thr Leu Glu Arg 195 200 205
Ala Val Asn Gly Arg Leu Glu Cys Phe Asp Ala Asn Phe Val Ala Ser 210 215 220
Leu Glu Phe Asp Glu Ile Cys Pro Asp Ile Tyr Ile Gly Pro Tyr Pro 225 230 235 240
Gln Thr Pro Glu His Val Glu Met Met His Glu Ala Gly Ile Thr Ala 245 250 255
Val Leu Asn Leu Gln Thr Asp Glu Asp Phe Ala His Arg Ser Ile Pro 260 265 270
Trp Ser Thr Leu Met Glu Thr Tyr Thr Ala Leu Glu Met Gln Val Ile 275 280 285
Arg Cys Pro Ile Pro Asp Phe Asn Ala Glu Ala Leu Met Gln Leu Leu 290 295 300
Pro Asp Ala Val Arg Ala Leu Asp Ala Ala Leu Lys Ala Lys Arg Val 305 310 315 320
Val Tyr Val His Cys Thr Ala Gly Met Gly Arg Ala Pro Ala Val Val 325 330 335
Val Ala Tyr Leu Val Trp Arg Arg Gly Met Thr Leu Glu Asp Ala Leu 340 345 350
Ser His Val Lys Ala Arg Arg Ala Val Ala Ala Pro Asn Val Thr Val 355 360 365
Leu Glu Lys Val Leu Arg Asn Pro Leu 370 375
<210> SEQ ID NO 7 <211> LENGTH: 831 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: C. merolae laforin Gly258 fragment <400> SEQUENCE: 7
atgggetgee tgategaagt tgaatgggaa egtaegegeg teetgtttte tatetaetae 60
ccgaccaaag aaaaacagca cctgtgtgtt acgggcgacc tgccggaaat cggtcgttgg 120
gtcgaaccgg gtccggtgcc gatggcgctg tcaaccacgg aagaacgcct ggaaaccggc 180
ggtaaaggte gtegetggte getgaeegte agegtgeegt etaeggtggg caaattegee 240
tategttaeg ttetggtega tgacaacege eageaaacea tttgggaaeg tgaaeegaat 300
cgctatgcaa cgctggaacg tgctgtcaac ggtcgcctgg aatgcttcga tgcaaatttt 360
gtggetteee tggaatttga tgaaatetgt eeggaeattt atateggtee gtaeeegeag 420

US 9,222,114 B1

acco	ccgga	aac a	atgto	ggaaa	at ga	atgca	acgaa	a geo	gggca	atta	ccgo	ccgtt	cct o	gaaco	ctgcaa	480
acgo	gatga	aag a	actto	cgcco	ca to	cgtaç	gtato	c ccé	gtggt	cca	ccct	gato	gga a	aacct	acacg	540
gcad	ctgga	aaa 1	tgcaa	agtga	at to	cgcto	gaaag	g ato	ccgg	gatt	ttaa	atgeg	gga a	ageed	ctgatg	600
caad	ctgct	ge (cggat	gcaç	gt go	cgtgo	cct	g gao	cgcaç	geee	tgaa	aagca	aaa a	acgco	gtggtt	660
tato	gttca	att 🤉	gtaco	cgcgo	gg ca	atggg	gtcgt	gca	accgo	gctg	tcgt	ggtt	cgc (gtaco	ctggtt	720
tggo	gtco	aca é	gcato	gacgo	ct go	gaaga	atgeo	g cto	gageo	cacg	tcaa	aagco	ccg (ccgt	gctgtt	780
gcco	geeed	cga a	atgto	gacgo	gt go	ctgga	aaaaa	a gtt	ctgo	cgta	acco	gete	gta a	a		831
<210 <211 <212 <213 <220 <223	0> SH L> LH 2> TY 3> OH 0> FH 3> OT	EQ II ENGTI (PE : RGAN) EATUI FHER	D NO H: 27 PRT ISM: RE: INFO	8 76 Art: DRMAT	ific: FION	ial s : C.	Seque merc	ence	lafo	orin	Gly2	258 1	fragi	nent	polypepti	ide
<400	/> 51	COLEI COLEI	NCE:	8	a 1		a 1	m	d]	3	m 1	7		T	Dl	
Met 1	GIΫ	сув	Leu	11e 5	GLU	va⊥	GLU	Trp	GIU 10	Arg	Thr	Arg	va⊥	Leu 15	rne	
Ser	Ile	Tyr	Tyr 20	Pro	Thr	Lys	Glu	Lys 25	Gln	His	Leu	Cys	Val 30	Thr	Gly	
Aap	Leu	Pro 35	Glu	Ile	Gly	Arg	Trp 40	Val	Glu	Pro	Gly	Pro 45	Val	Pro	Met	
Ala	Leu 50	Ser	Thr	Thr	Glu	Glu 55	Arg	Leu	Glu	Thr	Gly 60	Gly	ГЛЗ	Gly	Arg	
Arg 65	Trp	Ser	Leu	Thr	Val 70	Ser	Val	Pro	Ser	Thr 75	Val	Gly	Lys	Phe	Ala 80	
Tyr	Arg	Tyr	Val	Leu 85	Val	Asp	Asp	Asn	Arg 90	Gln	Gln	Thr	Ile	Trp 95	Glu	
Arg	Glu	Pro	Asn 100	Arg	Tyr	Ala	Thr	Leu 105	Glu	Arg	Ala	Val	Asn 110	Gly	Arg	
Leu	Glu	Cys 115	Phe	Asp	Ala	Asn	Phe 120	Val	Ala	Ser	Leu	Glu 125	Phe	Asp	Glu	
Ile	Cys 130	Pro	Asp	Ile	Tyr	Ile 135	Gly	Pro	Tyr	Pro	Gln 140	Thr	Pro	Glu	His	
Val 145	Glu	Met	Met	His	Glu 150	Ala	Gly	Ile	Thr	Ala 155	Val	Leu	Asn	Leu	Gln 160	
Thr	Aab	Glu	Asp	Phe 165	Ala	His	Arg	Ser	Ile 170	Pro	Trp	Ser	Thr	Leu 175	Met	
Glu	Thr	Tyr	Thr 180	Ala	Leu	Glu	Met	Gln 185	Val	Ile	Arg	Суз	Pro 190	Ile	Pro	
Asp	Phe	Asn 195	Ala	Glu	Ala	Leu	Met 200	Gln	Leu	Leu	Pro	Asp 205	Ala	Val	Arg	
Ala	Leu 210	Asp	Ala	Ala	Leu	Lys 215	Ala	Lys	Arg	Val	Val 220	Tyr	Val	His	Сув	
Thr 225	Ala	Gly	Met	Gly	Arg 230	Ala	Pro	Ala	Val	Val 235	Val	Ala	Tyr	Leu	Val 240	
Trp	Arg	Arg	Gly	Met 245	Thr	Leu	Glu	Asp	Ala 250	Leu	Ser	His	Val	Lys 255	Ala	
Arg	Arg	Ala	Val 260	Ala	Ala	Pro	Asn	Val 265	Thr	Val	Leu	Glu	Lys 270	Val	Leu	
Arg	Asn	Pro 275	Leu													

<210> SEQ ID NO 9 <211> LENGTH: 801 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: C. merolae laforin Arg267 fragment <400> SEQUENCE: 9 cgtacgcgcg tcctgttttc tatctactac ccgaccaaag aaaaacagca cctgtgtgtt 60 acgggcgacc tgccggaaat cggtcgttgg gtcgaaccgg gtccggtgcc gatggcgctg 120 tcaaccacgg aagaacgeet ggaaacegge ggtaaaggte gtegetggte getgaeegte 180 agegtgeegt ctaeggtggg caaattegee tategttaeg ttetggtega tgaeaaeege 240 cagcaaacca tttgggaacg tgaaccgaat cgctatgcaa cgctggaacg tgctgtcaac 300 ggtcgcctgg aatgcttcga tgcaaatttt gtggcttccc tggaatttga tgaaatctgt 360 420 ccggacattt atatcggtcc gtacccgcag accccggaac atgtggaaat gatgcacgaa gegggeatta eegeegttet gaacetgeaa aeggatgaag aettegeeea tegtagtate 480 ccgtggtcca ccctgatgga aacctacacg gcactggaaa tgcaagtgat tcgctgcccg 540 atcccggatt ttaatgcgga agccctgatg caactgctgc cggatgcagt gcgtgccctg 600 gacgcagccc tgaaagcaaa acgcgtggtt tatgttcatt gtaccgcggg catgggtcgt 660 gcaccggctg tcgtggttgc gtacctggtt tggcgtcgcg gcatgacgct ggaagatgcg 720 ctgagccacg tcaaagcccg ccgtgctgtt gccgccccga atgtgacggt gctggaaaaa 780 801 gttctgcgta acccgctgta a <210> SEQ ID NO 10 <211> LENGTH: 267 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: C. merolae laforin Arg267 fragment polypeptide <400> SEQUENCE: 10 Met Arg Thr Arg Val Leu Phe Ser Ile Tyr Tyr Pro Thr Lys Glu Lys 1 5 10 15 Gln His Leu Cys Val Thr Gly Asp Leu Pro Glu Ile Gly Arg Trp Val 20 25 30 Glu Pro Gly Pro Val Pro Met Ala Leu Ser Thr Thr Glu Glu Arg Leu 40 45 Glu Thr Gly Gly Lys Gly Arg Arg Trp Ser Leu Thr Val Ser Val Pro 55 Ser Thr Val Gly Lys Phe Ala Tyr Arg Tyr Val Leu Val Asp Asp Asn 75 65 70 80 Arg Gln Gln Thr Ile Trp Glu Arg Glu Pro Asn Arg Tyr Ala Thr Leu 90 85 Glu Arg Ala Val Asn Gly Arg Leu Glu Cys Phe Asp Ala Asn Phe Val 100 105 110 Ala Ser Leu Glu Phe Asp Glu Ile Cys Pro Asp Ile Tyr Ile Gly Pro 115 120 125 Tyr Pro Gln Thr Pro Glu His Val Glu Met Met His Glu Ala Gly Ile 135 140 130 Thr Ala Val Leu Asn Leu Gln Thr Asp Glu Asp Phe Ala His Arg Ser 145 150 155 160

Ile Pro Trp Ser Thr Leu Met Glu Thr Tyr Thr Ala Leu Glu Met Gln

				165					170					175	
Val	Ile	Arg	Cys 180	Pro	Ile	Pro	Asp	Phe 185	Asn	Ala	Glu	Ala	Leu 190	Met	Gln
Leu	Leu	Pro 195	Asp	Ala	Val	Arg	Ala 200	Leu	Asp	Ala	Ala	Leu 205	Гла	Ala	Lys
Arg	Val 210	Val	Tyr	Val	His	Cys 215	Thr	Ala	Gly	Met	Gly 220	Arg	Ala	Pro	Ala
Val 225	Val	Val	Ala	Tyr	Leu 230	Val	Trp	Arg	Arg	Gly 235	Met	Thr	Leu	Glu	Asp 240
Ala	Leu	Ser	His	Val 245	ГЛа	Ala	Arg	Arg	Ala 250	Val	Ala	Ala	Pro	Asn 255	Val
Thr	Val	Leu	Glu 260	Lys	Val	Leu	Arg	Asn 265	Pro	Leu					

What is claimed is:

1. A non-native glucan phosphatase polypeptide comprising the amino acid sequence as set forth in SEQ ID NO: 6, 8 or 10.

2. The polypeptide of claim **1**, wherein the polypeptide is a $_{25}$ thermophile.

3. The polypeptide of claim **2**, wherein the polypeptide is stable at least at a 3.0 pH to about 8.0 pH.

4. The polypeptide of claim **2**, wherein the polypeptide is stable at least at a temperature of about 10° C. to about 75° C.

5. A method for processing starch, comprising:

providing the thermophilic glucan phosphatase of claim 1; exposing a starch to the thermophilic glucan phosphatase; and

collecting the starch that has been exposed to the thermophilic glucan phosphatase.6. The method of claim 5, further comprising, before the

6. The method of claim 5, further comprising, before the collecting step, exposing the starch to a kinase, an amylase, or both.

* * * * *