18 research outputs found

    The augmentation of retinogeniculate communication during thalamic burst mode

    Get PDF
    Retinal signals are transmitted to cortex via neurons in the lateral geniculate nucleus (LGN), where they are processed in burst or tonic response mode. Burst mode occurs when LGN neurons are sufficiently hyperpolarized for T-Type Ca(2+) channels to de-inactivate, allowing them to open in response to depolarization which can trigger a high-frequency sequence of Na(+)-based spikes (i.e. burst). In contrast, T-type channels are inactivated during tonic mode and do not contribute to spiking. Although burst mode is commonly associated with sleep and the disruption of retinogeniculate communication, bursts can also be triggered by visual stimulation, thereby transforming the retinal signals relayed to the cortex.To determine how burst mode affects retinogeniculate communication, we made recordings from monosynaptically connected retinal ganglion cells and LGN neurons in male/female cats during visual stimulation. Our results reveal a robust augmentation of retinal signals within the LGN during burst mode. Specifically, retinal spikes were more effective and often triggered multiple LGN spikes during periods likely to have increased T-Type Ca(2+) channel activity. Consistent with the biophysical properties of T-Type Ca(2+) channels, analysis revealed that effect magnitude was correlated with the duration of the preceding thalamic interspike interval and occurred even in the absence of classically defined bursts. Importantly, the augmentation of geniculate responses to retinal input was not associated with a degradation of visual signals. Together, these results indicate a graded nature of response mode and suggest that, under certain conditions, bursts facilitate the transmission of visual information to the cortex by amplifying retinal signals.SIGNIFICANCE STATEMENTThe thalamus is the gateway for retinal information traveling to the cortex. The lateral geniculate nucleus (LGN), like all thalamic nuclei, has two classically defined categories of spikes-tonic and burst-that differ in their underlying cellular mechanisms. Here we compare retinogeniculate communication during burst and tonic response modes. Our results show that retinogeniculate communication is enhanced during burst mode and visually evoked thalamic bursts, thereby augmenting retinal signals transmitted to cortex. Further, our results demonstrate that the influence of burst mode on retinogeniculate communication is graded and can be measured even in the absence of classically defined thalamic bursts

    Decoupling social status and status certainty effects on health in macaques: a network approach.

    Get PDF
    BackgroundAlthough a wealth of literature points to the importance of social factors on health, a detailed understanding of the complex interplay between social and biological systems is lacking. Social status is one aspect of social life that is made up of multiple structural (humans: income, education; animals: mating system, dominance rank) and relational components (perceived social status, dominance interactions). In a nonhuman primate model we use novel network techniques to decouple two components of social status, dominance rank (a commonly used measure of social status in animal models) and dominance certainty (the relative certainty vs. ambiguity of an individual's status), allowing for a more complex examination of how social status impacts health.MethodsBehavioral observations were conducted on three outdoor captive groups of rhesus macaques (N = 252 subjects). Subjects' general physical health (diarrhea) was assessed twice weekly, and blood was drawn once to assess biomarkers of inflammation (interleukin-6 (IL-6), tumor necrosis factor-alpha (TNF-α), and C-reactive protein (CRP)).ResultsDominance rank alone did not fully account for the complex way that social status exerted its effect on health. Instead, dominance certainty modified the impact of rank on biomarkers of inflammation. Specifically, high-ranked animals with more ambiguous status relationships had higher levels of inflammation than low-ranked animals, whereas little effect of rank was seen for animals with more certain status relationships. The impact of status on physical health was more straightforward: individuals with more ambiguous status relationships had more frequent diarrhea; there was marginal evidence that high-ranked animals had less frequent diarrhea.DiscussionSocial status has a complex and multi-faceted impact on individual health. Our work suggests an important role of uncertainty in one's social status in status-health research. This work also suggests that in order to fully explore the mechanisms for how social life influences health, more complex metrics of social systems and their dynamics are needed

    Social buffering and contact transmission: network connections have beneficial and detrimental effects on Shigella infection risk among captive rhesus macaques.

    No full text
    In social animals, group living may impact the risk of infectious disease acquisition in two ways. On the one hand, social connectedness puts individuals at greater risk or susceptibility for acquiring enteric pathogens via contact-mediated transmission. Yet conversely, in strongly bonded societies like humans and some nonhuman primates, having close connections and strong social ties of support can also socially buffer individuals against susceptibility or transmissibility of infectious agents. Using social network analyses, we assessed the potentially competing roles of contact-mediated transmission and social buffering on the risk of infection from an enteric bacterial pathogen (Shigella flexneri) among captive groups of rhesus macaques (Macaca mulatta). Our results indicate that, within two macaque groups, individuals possessing more direct and especially indirect connections in their grooming and huddling social networks were less susceptible to infection. These results are in sharp contrast to several previous studies that indicate that increased (direct) contact-mediated transmission facilitates infectious disease transmission, including our own findings in a third macaque group in which individuals central in their huddling network and/or which initiated more fights were more likely to be infected. In summary, our findings reveal that an individual's social connections may increase or decrease its chances of acquiring infectious agents. They extend the applicability of the social buffering hypothesis, beyond just stress and immune-function-related health benefits, to the additional health outcome of infectious disease resistance. Finally, we speculate that the circumstances under which social buffering versus contact-mediated transmission may occur could depend on multiple factors, such as living condition, pathogen-specific transmission routes, and/or an overall social context such as a group's social stability

    Measuring dominance certainty and assessing its impact on individual and societal health in a nonhuman primate model: a network approach

    No full text
    The notion of dominance is ubiquitous across the animal kingdom, wherein some species/groups such relationships are strictly hierarchical and others are not. Modern approaches for measuring dominance have emerged in recent years taking advantage of increased computational power. One such technique, named Percolation and Conductance (Perc), uses both direct and indirect information about the flow of dominance relationships to generate hierarchical rank order that makes no assumptions about the linearity of these relationships. It also provides a new metric, known as 'dominance certainty', which is a complimentary measure to dominance rank that assesses the degree of ambiguity of rank relationships at the individual, dyadic and group levels. In this focused review, we will (i) describe how Perc measures dominance rank while accounting for both nonlinear hierarchical structure as well as sparsity in data-here we also provide a metric of dominance certainty estimated by Perc, which can be used to compliment the information dominance rank supplies; (ii) summarize a series of studies by our research team reflecting the importance of 'dominance certainty' on individual and societal health in large captive rhesus macaque breeding groups; and (iii) provide some concluding remarks and suggestions for future directions for dominance hierarchy research. This article is part of the theme issue 'The centennial of the pecking order: current state and future prospects for the study of dominance hierarchies'

    Monkey’s Social Roles Predict Their Affective Reactivity

    No full text
    Accumulating evidence demonstrates that the number of social connections an individual has predicts health and wellbeing outcomes in people and nonhuman animals. In this report, we investigate the relationship between features of an individuals' role within his social network and affective reactivity to ostensibly threatening stimuli, using a highly translatable animal model - rhesus monkeys. Features of the social network were quantified via observations of one large (0.5 acre) cage that included 83 adult monkeys. The affective reactivity profiles of twenty adult male monkeys were subsequently evaluated in two classic laboratory-based tasks of negative affective reactivity (human intruder and object responsiveness). Rhesus monkeys who had greater social status, characterized by age, higher rank, more close social partners, and who themselves have more close social partners, and who played a more central social role in their affiliative network were less reactive on both tasks. While links between social roles and social status and psychological processes have been demonstrated, these data provide new insights about the link between social status and affective processes in a tractable animal model of human health and disease
    corecore