59 research outputs found

    Pancreatic Neuroendocrine Neoplasms: from Genetics to Everolimus Resistance

    Get PDF
    Pancreatic neuroendocrine neoplasms are rare tumors of which the genetic constitution is not fully understood. In addition, resistance against everolimus, a frequently used treatment modality, forms a clinical challenge in these tumors. This thesis contains studies on the genetic make-up of pancreatic neuroendocrine tumors, the mechanisms of everolimus resistance and how to overcome this resistance

    Cell-Free DNA From Metastatic Pancreatic Neuroendocrine Tumor Patients Contains Tumor-Specific Mutations and Copy Number Variations

    Get PDF
    Background: Detection of tumor-specific alterations in cell-free DNA (cfDNA) has proven valuable as a liquid biopsy for several types of cancer. So far, use of cfDNA remains unexplored for pancreatic neuroendocrine tumor (PNET) patients.Methods: From 10 PNET patients, fresh frozen tumor tissue, buffy coat and plasma samples were collected. Whole-exome sequencing of primary tumor and germline DNA was performed to identify tumor-specific variants and copy number variations (CNVs). Subsequently, tumor-specific variants were quantified in plasma cfDNA with droplet digital PCR. In addition, CNV analysis of cfDNA was performed using shallow whole-genome sequencing.Results: Tumor-specific variants were detected in perioperative plasma samples of two PNET patients, at variant allele fractions (VAFs) of respectively 19 and 21%. Both patients had metastatic disease at time of surgery, while the other patients presented with localized disease. In the metastatic patients, CNV profiles of tumor tissue and cfDNA were significantly correlated. A follow-up plasma sample of a metastatic patient demonstrated an increased VAF (57%) and an increased chromosomal instability, in parallel with an increase in tumor burden.Conclusions: We are the first to report the presence of tumor-specific genetic alterations in cfDNA of metastatic PNET patients and their evolution during disease progression. Additionally, CNV analysis in cfDNA shows potential as a liquid biopsy

    PDX1 DNA methylation distinguishes two subtypes of pancreatic neuroendocrine neoplasms with a different prognosis

    Get PDF
    DNA methylation is a crucial epigenetic mechanism for gene expression regulation and cell differentiation. Furthermore, it was found to play a major role in multiple pathological processes, including cancer. In pancreatic neuroendocrine neoplasms (PNENs), epigenetic deregulation is also considered to be of significance, as the most frequently mutated genes have an important function in epigenetic regulation. However, the exact changes in DNA methylation between PNENs and the endocrine cells of the pancreas, their likely cell-of-origin, remain largely unknown. Recently, two subtypes of PNENs have been described which were linked to cell-of-origin and have a different prognosis. A difference in the expression of the transcription factor PDX1 was one of the key molecular differences. In this study, we performed an exploratory genome-wide DNA methylation analysis using Infinium Methylation EPIC arrays (Illumina) on 26 PNENs and pancreatic islets of five healthy donors. In addition, the methylation profile of the PDX1 region was used to perform subtyping in a global cohort of 83 PNEN, 2 healthy alpha cell and 3 healthy beta cell samples. In our exploratory analysis, we identified 26,759 differentially methylated CpGs and 79 differentially methylated regions. The gene set enrichment analysis highlighted several interesting pathways targeted by altered DNA methylation, including MAPK, platelet-related and immune system-related pathways. Using the PDX1 methylation in 83 PNEN, 2 healthy alpha cell and 3 healthy beta cell samples, two subtypes were identified, subtypes A and B, which were similar to alpha and beta cells, respectively. These subtypes had different clinicopathological characteristics, a different pattern of chromosomal alterations and a different prognosis, with subtype A having a significantly worse prognosis compared with subtype B (HR 0.22 [95% CI: 0.051–0.95], p = 0.043). Hence, this study demonstrates that several cancer-related pathways are differently methylated between PNENs and normal islet cells. In addition, we validated the use of the PDX1 methylation status for the subtyping of PNENs and its prognostic importance

    Long-term acquired everolimus resistance in pancreatic neuroendocrine tumours can be overcome with novel PI3K-AKT-mTOR inhibitors

    Get PDF
    Background:The mTOR-inhibitor everolimus improves progression-free survival in advanced pancreatic neuroendocrine tumours (PNETs). However, adaptive resistance to mTOR inhibition is described.Methods:QGP-1 and BON-1, two human PNET cell lines, were cultured with increasing concentrations of everolimus up to 22 weeks to reach a dose of 1 μM everolimus, respectively, 1000-fold and 250-fold initial IC 50. Using total DNA content as a measure of cell number, growth inhibitory dose-response curves of everolimus were determined at the end of resistance induction and over time after everolimus withdrawal. Response to ATP-competitive mTOR inhibitors OSI-027 and AZD2014, and PI3K-mTOR inhibitor NVP-BEZ235 was studied. Gene expression of 10 PI3K-Akt-mTOR pathway-related genes was evaluated using quantitative real-time PCR (RT-qPCR).Results:Long-term everolimus-treated BON-1/R and QGP-1/R showed a significant reduction in everolimus sensitivity. During a drug holiday, gradual return of everolimus sensitivity in BON-1/R and QGP-1/R led to complete reversal of resistance after 10-12 weeks. Treatment with AZD2014, OSI-027 and NVP-BEZ235 had an inhibitory effect on cell proliferation in both sensitive and resistant cell lines. Gene expression in BON-1/R revealed downregulation of MTOR, RICTOR, RAPTOR, AKT and HIF1A, whereas 4EBP1 was upregulated. In QGP-1/R, a downregulation of HIF1A and an upregulation of ERK2 were observed.Conclusions:Long-term everolimus resistance was induced in two human PNET cell lines. Novel PI3K-AKT-mTOR pathway-targeting drugs can overcome everolimus resistance. Differential gene expression profiles suggest different mechanisms of everolimus resistance in BON-1 and QGP-1

    Prognostic implications of cellular senescence in resected non-small cell lung cancer

    Get PDF
    Background: Cure and long-term survival for non-small cell lung cancer (NSCLC) remains hard to achieve. Cellular senescence, an emerging hallmark of cancer, is considered as an endogenous tumor suppressor mechanism. However, senescent cancer cells can paradoxically affect the surrounding tumor microenvironment (TME), ultimately leading to cancer relapse and metastasis. As such, the role of cellular senescence in cancer is highly controversial. Methods: In 155 formalin-fixed paraffin-embedded (FFPE) samples from surgically resected NSCLC patients with pathological tumor-node-metastasis (pTNM) stages I-IV (8th edition), cellular senescence was assessed using a combination of four immunohistochemical senescence markers, i.e., lipofuscin, p16INK4a, p21WAF1/Cip1 and Ki67, and correlated to clinicopathological parameters and outcomes, including overall survival (OS) and disease-free survival (DFS). Results: A tumoral senescence signature (SS) was present in 48 out of 155 NSCLC patients, but did not correlate to any clinicopathological parameter, except for p53 mutation status. In a histologically homogenous patient cohort of 100 patients who fulfilled the following criteria: (I) one type of histology, i.e., adenocarcinoma, (II) without known epidermal growth factor receptor (EGFR) mutation, (III) curative (R0) resection and (IV) no neoadjuvant systemic therapy or radiotherapy, the median OS and DFS for patients with a tumoral SS (n=30, 30.0%) compared to patients without a tumoral SS (n=70, 70.0%) was 53 versus 141 months (P=0.005) and 45 versus 55 months (P=0.25), respectively. In multiple Cox proportional hazards (Cox PH) model analysis correcting for age, pTNM stage I-III and adjuvant therapy, a tumoral SS remained a significant prognostic factor for OS (HR =2.03; P=0.014). Conclusions: The presence of a tumoral SS particularly based on high p16INK4a expression significantly affects OS in NSCLC adenocarcinoma. In this light, adjuvant senolytic therapy could be an interesting strategy for NSCLC patients harboring a tumoral SS, ultimately to improve survival of these patients

    Cancer-associated fibroblasts as a common orchestrator of therapy resistance in lung and pancreatic cancer

    Get PDF
    Cancer arises from mutations accruing within cancer cells, but the tumor microenvironment (TME) is believed to be a major, often neglected, factor involved in therapy resistance and disease progression. Cancer-associated fibroblasts (CAFs) are prominent and key components of the TME in most types of solid tumors. Extensive research over the past decade revealed their ability to modulate cancer metastasis, angiogenesis, tumor mechanics, immunosuppression, and drug access through synthesis and remodeling of the extracellular matrix and production of growth factors. Thus, they are considered to impede the response to current clinical cancer therapies. Therefore, targeting CAFs to counteract these protumorigenic effects, and overcome the resistance to current therapeutic options, is an appealing and emerging strategy. In this review, we discuss how CAFs affect prognosis and response to clinical therapy and provide an overview of novel therapies involving CAF-targeting agents in lung and pancreatic cancer
    • …
    corecore