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Abstract: DNA methylation is a crucial epigenetic mechanism for gene expression regulation and cell
differentiation. Furthermore, it was found to play a major role in multiple pathological processes,
including cancer. In pancreatic neuroendocrine neoplasms (PNENs), epigenetic deregulation is
also considered to be of significance, as the most frequently mutated genes have an important
function in epigenetic regulation. However, the exact changes in DNA methylation between PNENs
and the endocrine cells of the pancreas, their likely cell-of-origin, remain largely unknown. Recently,
two subtypes of PNENs have been described which were linked to cell-of-origin and have a different
prognosis. A difference in the expression of the transcription factor PDX1 was one of the key molecular
differences. In this study, we performed an exploratory genome-wide DNA methylation analysis
using Infinium Methylation EPIC arrays (Illumina) on 26 PNENs and pancreatic islets of five healthy
donors. In addition, the methylation profile of the PDX1 region was used to perform subtyping in
a global cohort of 83 PNEN, 2 healthy alpha cell and 3 healthy beta cell samples. In our exploratory
analysis, we identified 26,759 differentially methylated CpGs and 79 differentially methylated regions.
The gene set enrichment analysis highlighted several interesting pathways targeted by altered
DNA methylation, including MAPK, platelet-related and immune system-related pathways. Using
the PDX1 methylation in 83 PNEN, 2 healthy alpha cell and 3 healthy beta cell samples, two
subtypes were identified, subtypes A and B, which were similar to alpha and beta cells, respectively.
These subtypes had different clinicopathological characteristics, a different pattern of chromosomal
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alterations and a different prognosis, with subtype A having a significantly worse prognosis compared
with subtype B (HR 0.22 [95% CI: 0.051–0.95], p = 0.043). Hence, this study demonstrates that
several cancer-related pathways are differently methylated between PNENs and normal islet cells.
In addition, we validated the use of the PDX1 methylation status for the subtyping of PNENs and its
prognostic importance.

Keywords: pancreatic neuroendocrine neoplasms; DNA methylation; PDX1; subtypes; cell-of-origin;
prognosis

1. Introduction

Pancreatic neuroendocrine neoplasms (PNENs) are rare neoplasms that can develop in the context
of familial syndromes (10%). However, the vast majority of PNEN are sporadic occurrences (90%) [1,2].
The highest risk of developing PNENs is seen in the familial multiple endocrine neoplasia 1 (MEN1)
syndrome, in which 60% of patients develop a PNEN due to germline mutations in the MEN1 gene [3].
Other syndromes are linked to germline mutations in VHL, CDKN1B, NF1, TSC1 and TSC2 [4–7].
A growing body of evidence contributes to the understanding of molecular mechanisms in sporadic
PNENs with the most frequently mutated genes being MEN1 (44%), DAXX (25%), ATRX (18%)
and PI3K-AKT-mTOR pathway genes (15%) [8]. Further unravelling of the pathways involved in
PNENs has shown that the chromatin remodeling pathway and telomere maintenance pathway are
frequently deregulated due to inactivation of MEN1, ATRX, DAXX, SETD2 and MLL3 [9]. As these
pathways are important for epigenetic regulation, their frequent inactivation suggests an important
role for epigenetic deregulation in PNEN tumorigenesis. So far, however, our understanding of
the epigenetic landscape of PNENs remains incomplete, with DNA methylation being the most studied
epigenetic feature [10–12].

PNENs can be classified as functional (25%) or non-functional PNENs (75%), based on, respectively,
the presence or absence of symptoms associated with the overproduction of specific hormones [13].
The production of these specific hormones could be suggestive for cell-of-origin. Insulinomas
(functional PNENs overproducing insulin), for example, are expected to originate from beta cells [14].
Non-functional PNENs most likely originate from different cell types, which might contribute
to the observed heterogeneity in clinical characteristics and prognosis in this patient population.
Our knowledge regarding cell-of-origin of, especially non-functional, PNENs remains limited [14].
However, two recent publications made important contributions [15,16]. As previously described,
PNENs are frequently mutated in DAXX, ATRX and MEN1 and mutations in these genes have
been linked to prognosis [11]. Chan et al. compared the gene expression and DNA methylation
profiles of tumors that are ATRX/DAXX/MEN1 (A-D-M) mutated or A-D-M wild type (WT) [15]. They
found that mutated and WT tumors clustered separately based on expression and DNA methylation
profiles, with mutant tumors having an expression profile similar to alpha cells. Interestingly, in these
mutant tumors, they described a high ARX and low PDX1 expression compared with WT tumors
and a hypermethylation of four CpGs in the PDX1 promotor of the mutant tumors [15]. Neiman et al.
also found low DNA methylation levels in the PDX1 promotor in beta cells and high DNA methylation
levels in the PDX1 promotor in alpha cells [17]. Furthermore, Cejas et al. performed subtyping of
non-functional PNENs into two major subtypes, subtype A and subtype B, based on expression patterns
and histone modifications in enhancer regions, which resemble alpha and beta cells, respectively [16].
Based on the H3K27 acetylation pattern, they also identified super-enhancer regions, which contain
genes that play an important role in defining cell identity [16,18]. The ARX and PDX1 regions met
super-enhancer criteria in subtype A and B PNENs, respectively. Interestingly, subtyping was also
possible using immunohistochemistry for ARX and PDX1 and these subtypes were associated with
a significant difference in relapse-free survival [16].
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Knowledge regarding genome-wide DNA methylation changes that occur during PNEN
tumorigenesis is still limited. To further explore this, we have performed DNA methylation profiling
of 26 PNENs and compared this to the methylation profile of five pancreatic islet cells using Infinium
EPIC DNA methylation arrays (Illumina), which interrogate an extensive amount of CpGs. In addition,
PDX1 DNA methylation has not been used previously to perform PNEN subtyping, although PDX1
expression has been highlighted as one of the most important differences between recently described
subtypes. To evaluate the potential of PDX1 DNA methylation to perform subtyping and as a prognostic
marker, we have combined our EPIC array data with additional Illumina 450K array data, resulting in
an extensive cohort of 83 PNENs.

2. Results

2.1. Patient Characteristics

For this study, 26 PNEN patients were included in Belgium, 15 from the biobank at the Antwerp
University Hospital (biobank@UZA, Antwerp, Belgium; ID: BE71030031000) [19], 7 from the "biothèque"
of the University of Liège (BUL)—University Hospital (CHU) Liège (Belgium) and 4 from the tumor
bank of the University Hospital Brussels (UZ Brussel, Belgium) [20]. The clinical and pathological
characteristics of this patient cohort are summarized in Table S1. Fifty percent of the included patients
were female, the mean age at diagnosis was 58 ± 17 years, 27% had a functional tumor (five insulinomas
and two gastrinomas), two patients had metastatic disease at diagnosis and 12, 13 and 1 patient(s) were
WHO grade 1, 2 and 3, respectively. Pancreatic islet samples were derived from five healthy donors,
three males and two females and their mean age was 59 ± 4 years, which is in the same range as
the PNEN study cohort. Pancreatic islets were used as controls, as PNENs develop from the endocrine
cells of the pancreas. Fresh frozen tumor tissue from the 26 Belgian PNEN patients and fresh frozen
pancreatic islets from the five healthy donors were analyzed using Infinium MethylationEPIC arrays
(Illumina) (EPIC study cohort).

Infinium HumanMethylation450K BeadChip (Illumina) DNA methylation data of 15 additional
fresh frozen samples of well-differentiated PNENs were generated in New Zealand [21]. Furthermore,
Infinium HumanMethylation450K BeadChip (Illumina) DNA methylation data have been obtained via
public databases from 32 PNENs analyzed by Chan et al. [15], 5 PNENs analyzed by Timp et al. [22]
and 5 PNENs analyzed within the PAAD project of The Cancer Genome Atlas (TCGA) Research
Network (https://www.cancer.gov/tcga). This resulted in 450K DNA methylation data of 57 PNENs
(450K study cohort), of which, clinicopathological data were available for 52 (Table S1). Together with
the EPIC study cohort, 83 patients were included, of which, 49% were female, the mean age at diagnosis
was 56 ± 13 years, 82% had a nonfunctional tumor, 23 patients had described metastatic disease
at diagnosis and 39, 30 and 3 patients were of WHO grade 1, 2 and 3, respectively. Figure 1 provides
an overview of the included patients and the analyses that were performed on the different cohorts.

Figure 1. Overview of the study cohort and the analyses that were performed on (subsets of) the cohort.
(CNA, copy number alteration; PNEN, pancreatic neuroendocrine neoplasm).

https://www.cancer.gov/tcga
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2.2. Exploratory DNA Methylation Analysis of EPIC Study Cohort

As a first step, we performed an exploratory DNA methylation analysis in the EPIC study cohort.
For the main analysis, we have used the Chip Analysis Methylation Pipeline (ChAMP) package, using
default settings unless indicated otherwise, which provides a pipeline that integrates available DNA
methylation array analysis methods [23]. After read-in of the raw data, beta values representing
the DNA methylation level were calculated. Beta values range from 0 (unmethylated) to 1 (completely
methylated). As DNA methylation arrays use two probe technologies with a different dynamic range,
normalization was performed and these normalized beta values were used for further analysis. Singular
value decomposition (SVD) analysis was used to look at batch effects, but it identified no significant
technical sources of variation in the data, so no correction had to be applied. The multidimensional
scaling (MDS) analysis showed a dense clustering of the normal pancreatic islets, while the tumor
samples are more spatially distributed (Figure 2A). ChAMP was also used to identify differential
methylation between PNENs and pancreatic islets at individual CpGs (differentially methylated probes
(DMPs)) or in regions (differentially methylated regions (DMRs)), with an adjusted p-value ≤ 0.05
as the cut-off of significance. The differential methylation analysis between PNENs and pancreatic
islets identified 26,759 DMPs (Top 10 in Table S2) and 79 DMRs. Of the 26,759 DMPs, 14,480 could be
mapped to 7213 genes, of which, 1487 genes contained 3 or more DMPs. An amount of 3157 DMPs
had a difference in methylation (delta beta) larger than 0.3 (Figure 2B). Eighty-five percent of the DMPs
are hypomethylated and the distribution of the hypermethylated and hypomethylated DMPs based on
location in the CpG island and genomic feature is shown in Figure 2C. To allow both a comparison of
hypo- versus hypermethylated DMPs and a comparison between the different categories, we have
normalized the DMP counts by dividing them through the total number of analyzed CpGs in that
category. The highest fraction of DMPs is situated in open sea regions (>4 kb from a CpG island),
with comparable fractions for hypomethylated (42.2%) and hypermethylated (47.2%) DMPs. A higher
fraction of hypomethylated DMPs (23.9%) is situated in CpG shore regions (0–2kb from CpG island)
compared with hypermethylated DMPs (7.9%), while the fraction of hypermethylated DMPs (37.1%)
in shelf regions (2–4 kb from CpG island) is higher than the fraction of hypomethylated DMPs (26.6%).
Regarding the distribution of DMPs over genomic features, a few differences can be observed between
hypo- and hypermethylated DMPs and between features. The highest portion of hypomethylated
DMPs can be found in intergenic regions (28.8%), while the portion of all other features is less than
15%. Considering transcription start site (TSS) 1500 (200–1500 bases upstream of TSS), TSS200 (0–200
bases upstream of TSS) and 5′UTR as the promotor region, the fraction of hypermethylated DMPs
(33.9%) is slightly higher than the fraction of hypomethylated DMPs (27.6%) in this promotor region.
The highest portion of hypermethylated DMPs is present in the gene body (22.5%).

Gene set enrichment analysis, based on differential methylation analysis of individual CpGs, was
performed using methylGSA [24]. This tool allows an assessment of an enrichment in differential
methylation in certain gene sets, thereby adjusting for the number of CpGs in each gene to evade bias
by the amount of CpGs analyzed per gene. Gene sets from Reactome, Gene Ontology (GO) and Kyoto
Encyclopedia of Genes and Genomes (KEGG) pathways were interrogated. A significant enrichment
was identified in 49 Reactome pathways, 549 GO categories and 7 KEGG pathways (Table S3). Among
the most enriched Reactome pathways are MAPK-related pathways (e.g., “RAF/MAP kinase cascade”,
“MAPK1/MAPK3 signaling” and “MAPK family signaling cascades”), death receptor signaling,
platelet-related pathways and multiple immune-related pathways. Among the most enriched GO
categories are chromatin/chromatid/centromere-related categories, “telomere maintenance”, “DNA
damage checkpoint”, and several immune system/cytokine-related categories. Interestingly, within
the seven significant KEGG pathways, “cytokine–cytokine receptor interaction” can be found in
accordance with enrichment in immune system/cytokine-related gene sets in GO and Reactome.
Furthermore, GO, KEGG and Reactome all indicated an enrichment of genes associated with olfactory
receptor signaling.
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Figure 2. Exploratory analysis of EPIC DNA methylation data of 26 PNENs and 5 pancreatic
islets. (A) Multidimensional scaling (MDS) analysis shows how PNENs (red) cluster separately from
the pancreatic islets (black). (B) Volcano plot of all differentially methylated probes (DMPs) (black),
the DMPs with a delta beta (difference in methylation between normal and tumor) greater than
0.3 are highlighted in red. (C) The distribution of hypo- and hypermethylated DMPs according to
CpG island feature (island, open sea, shelf, shore) on the left and according to genomic feature (1st

exon, 3′ untranslated region (UTR), 5′UTR, body, exon boundary (ExonBnd), intergenic region (IGR),
transcription start site (TSS) 1500 (200–1500 bases upstream of TSS) and TSS200 (0–200 bases upstream
of TSS) on the right.

As described, 79 DMRs were identified. The annotation of these regions and enrichment analysis
were performed using the GREAT tool [25]. An enrichment was identified for the GO biological process
“Regulation of immune system process” (false discovery rate (FDR) value = 0.046).

The enrichment in immune system components is not expected to result from the presence of
immune cells as the tumor cell percentage is high in all tumor samples, although the exact impact of
possibly present immune cells is difficult to quantify.
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Next, we investigated whether epigenetic alterations in the immune system pathways resulted in
immune hot or cold tumor sites. Therefore, we evaluated fresh frozen hematoxylin-eosin (HE)-stained
slides of 18 evaluable PNENs for the presence of stromal tumor-infiltrating lymphocytes (TILs).
The percentage of stromal TILs was low (≤ 5%) for most tumors, two tumors showed a slightly
increased percentage of TILs (5%–20%) and only one sample (UZA-22) showed a higher percentage
of stromal TILs of approximately 30% with clearly visible lymphoid aggregates (Table S1). Notably,
the observed lymphoid aggregates can also originate from pre-existing lymphoid tissue as this sample
originated from a lymph node metastasis, therefore it does not necessarily prove an immune activation
by the tumor. These data suggest that altered methylation might result in the silencing of immune
pathways and potentially enable the tumor to escape detection by the immune system.

2.3. PDX1 Methylation Status Distinguishes A and B Subtype

As previously described, PDX1 is an important transcription factor in determining differentiation
into pancreatic alpha or beta cells and might be useful to perform subtyping in PNENs. PDX1 is
expressed in beta cells, while it is not expressed in alpha cells and PDX1 has been reported to be
hypermethylated in alpha cell-like PNENs [15]. PDX1 has low methylation levels in beta cells and high
methylation levels in alpha cells [17]. To study the potential of PDX1 methylation to perform PNEN
subtyping, we have combined all the collected PNEN methylation data and methylation data of
alpha and beta cells. First, all the CpGs situated in the region of the PDX1 gene, as described by
Cejas et al. (chr13:28480000–28510000), and that are common between 450K and EPIC arrays, were
selected (Figure 3A). Methylation values of the 83 PNENs, 2 alpha and 3 beta cells in this PDX1 region
were used to perform unsupervised hierarchical clustering (Figure 3B). The dendrogram shows two
groups. In Figure 3B, we also indicated which tumors have mutations in ATRX/DAXX/MEN1, if this
information was available, and other clinicopathological information. The biggest group contains 62
PNENs and almost all A-D-M mutated tumors. Interestingly, also the two alpha cell samples cluster
within this group. This group of PNENs therefore corresponds to subtype A [15,16]. The other group
consists of 21 PNENs which are almost exclusively A-D-M WT tumors and this group also contains
beta cell samples, indicating that these are PNENs of subtype B.

2.4. Subtype Associates with Functionality and Metastatic Potential

Associations between the subtype and clinicopathological characteristics were tested and the results
are summarized in Table 1. A significant association was found between subtype and mutation
status, with a higher proportion of mutated tumors with subtype A, which is in agreement with
the literature [15]. No significant association was found between WHO grade and subtype. However,
all three G3 tumors were subtype A. Subtype and functionality of the tumor were significantly
associated. A higher proportion of insulinomas was subtype B (n = 6) compared with subtype A (n = 2),
the only glucagonoma was subtype A, gastrinomas were divided over the two subtypes, one with
subtype A and one with subtype B and the two VIPomas were subtype A. Subtype was significantly
associated with the presence of distant metastasis at diagnosis and showed a trend towards significant
association with lymphovascular invasion (LVI) at diagnosis, with a higher proportion of cases with LVI
and distant metastasis for subtype A compared with B. Recurrences after surgery were only observed
in patients with subtype A PNENs, which resulted in a significant difference in recurrence between
the two subtypes.

2.5. Subtypes Have a Different Prognosis

Overall survival analysis was performed using Cox proportional hazards (CoxPH) regression
modeling, which investigates an association between survival time and predictor variables. Univariate
CoxPH modeling for subtype showed that patients with subtype B had a significantly lower risk of
death compared with subtype A with a hazards ratio (HR) of 0.22 for subtype B (95% confidence
interval (CI): 0.051–0.95, p = 0.043). Figure 4A shows the associated Kaplan–Meier survival curve.
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Median overall survival for subtype A was 11.9 years (95% CI: 7.7 years—not reached) and was
not reached for subtype B (95% CI: 12.9 years—not reached). The CoxPH analysis was repeated in
a subpopulation of patients where there was no distant metastasis present at diagnosis, resulting in
a HR of 0.16 for subtype B (95% CI: 0.019–1.4, p = 0.092) (Figure 4B).

Figure 3. DNA methylation of the PDX1 gene region can be used to perform subtyping. (A) Layout of
the PDX1 gene region with the CpG probes (green lollipops) that have been used for the clustering.
(B) Unsupervised hierarchical clustering of the available PNEN, alpha cell (black) and beta cell (black)
samples. Two groups can be distinguished, group A (in red), which contains the alpha cells and subtype
A PNENs, and group B (in blue), which contains the beta cells and subtype B PNENs. Additional
clinicopathological characteristics, e.g., mutation status of ATRX/DAXX/MEN1, presence of distance
metastasis at diagnosis, functionality and WHO Grade (G1-3), are shown for the samples. (NA, not
applicable or information not available; NF, non-functional; INS, insulinoma; GLUC, glucagonoma;
GAST, gastrinoma; VIP, VIPoma).

In a multivariate CoxPH model, which included both age and gender, a significant effect of
subtype on overall survival was also observed with a HR of 0.23 for subtype B (95% CI: 0.052–0.99,
p = 0.049) (Figure 4C). In a multivariate CoxPH model including distant metastasis and WHO grade
besides subtype, age and gender, only distant metastasis (HR 3.58 [95% CI: 1.26–10.2], p = 0.017)
and WHO grade 3 (HR 20.33 [95% CI: 3.90–106.1], p < 0.001) had a significant effect on survival.
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Table 1. Association between clinicopathological characteristics and subtype.

Clinicopathological Parameter Subtype A Subtype B p-Value

Gender 0.20
F 25 13
M 32 8

Mutation MEN1/ATRX/DAXX 7.6E-06
No 10 13
Yes 38 2

WHO Grade 0.66
G1 27 12
G2 22 8
G3 3 0

Functionality 0.011
Gastrinoma 1 1
Glucagonoma 1 0
Insulinoma 2 6
Non-functional 46 13
VIPoma 2 0

LVI 0.059
No 14 8
Yes 31 5

Distant metastasis 0.022
No 32 18
Yes 21 2

Recurrence 5.9E-04
No 14 16
Yes 13 0

Age 57.1 (±12.1) 53.1 (±15.0) 0.29
Tumor size 4.4 (±2.6) 3.77 (±3.2) 0.18

The counts are shown for categorical variables and the mean (±standard deviation) for continuous variables.
Significant p-values (≤ 0.05) are indicated in bold. (LVI, lymphovascular invasion).

2.6. Copy Number Alterations are Different between the Two Subtypes

To further compare the characteristics of the two subtypes, we have compared their copy number
alteration (CNA) profiles. Data from methylation arrays can be used to infer CNAs in a similar way
as SNP arrays. To perform CNA calling, we used the conumee package which uses normal samples,
preferably on the same arrays, as a reference and calculates the log ratio (logR) [26]. We have therefore
performed the CNA calling only on the EPIC study cohort, for which good normal control samples
and more data points were available, given the large number of probes on the EPIC DNA methylation
arrays. To validate CNA calling on the methylation data, we compared the CNA profile based on DNA
methylation analysis with the CNA profile based on whole-exome sequencing (WES) analysis for two
tumors where both types of data were available [27]. Results were very comparable between CNAs
on WES and on the methylation data (Figure S1). Then, the CNA profile was determined for every
tumor and the frequencies of gains and losses per subtype were calculated and shown as a circos plot
(Figure 5). In the EPIC cohort, 16 tumors were of subtype A and 10 tumors of subtype B.
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Figure 4. Survival analysis for the two subtypes, A and B. (A) Kaplan–Meier overall survival curve for
all patients for which follow-up data were available with associated p-value from Cox proportional
hazards analysis. (B) Kaplan–Meier overall survival curve for patients without distant metastasis
at diagnosis with associated p-value from Cox proportional hazards analysis. (C) Cox proportional
hazards model for subtype, age and gender (F, female; M, male). Hazards ratios with 95% confidence
intervals and p-values are shown.

Overall, the pattern of CNAs seems to differ between tumors of subtype A and tumors of subtype
B. Chromosomal losses are more commonly observed in subtype A tumors, with chromosomes 1, 2, 6,
10, 11, 16 and 22 being most affected. The frequency of losses is low in subtype B, however, loss of
chr11 is frequently observed and to a lesser extent loss of chr13, which is not observed in subtype A.
Chromosomal gains are common in both subtypes and frequencies of gains of several chromosomes,
such as chromosomes 5, 7, 9 and 13, seem comparable in both subtypes. In addition, gains are also
commonly observed in subtype A in chromosomes 4, 12, 14, 17, 18, 19, 20 and 21. Gains in chr21 seem,
however, more frequent in subtype B. Furthermore, in subtype B we have observed gains of chr6, for
which we have observed losses in subtype A, and a relatively high frequency of gains in chr8, for
which there were barely any chromosomal alterations observed in subtype A.
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Figure 5. Circos plots of the frequency of copy number alterations observed in PNENs of (A) subtype
A and (B) subtype B. Gains are indicated in green and losses in red.

3. Discussion

DNA methylation is an important epigenetic mechanism for the regulation of gene expression
and plays a crucial role in cell differentiation. Moreover, changes in DNA methylation have been
indicated to play a major role in multiple diseases including cancer, where it promotes tumor
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development and progression. In PNENs, for example, genes that play a role in epigenetic regulation
are frequently mutated, suggesting an important role for epigenetic deregulation in this tumor type [9].

Our study has analyzed genome-wide differential methylation between PNENs and their normal
counterparts, the endocrine cells of the pancreas situated in the pancreatic islets. All samples were
fresh frozen and analyzed using the EPIC DNA methylation array that interrogates approximately
850,000 CpGs across the genome, which is two times more than most previous studies [10,11,15,28].
Clustering analysis showed that pancreatic islets clustered closely together and separately from
PNENs based on their DNA methylation profile. Differential methylation analysis between pancreatic
islets and PNENs identified 26,759 DMPs and 79 DMRs. We compared the distribution of hypo-
and hypermethylated DMPs over different genomic features. Interestingly, the highest portion of
hypomethylated DMPs could be found in intergenic regions (28.8%), which might result from a global
hypomethylation that is frequently observed in cancer [29]. The portion of hypermethylated DMPs
in IGRs was approximately three times less (10.2%), and this pattern has also been observed by
Naumov et al. in colorectal cancer [30]. Furthermore, high portions of hypermethylated DMPs
were found in the gene body (22.5%) and the 5’UTR (22.1%) and gene body methylation has been
described to be able to increase the gene expression, for example, of metabolic genes or oncogenes [31].
Gene set enrichment analysis has highlighted the MAPK pathway as a possibly important pathway
in PNENs, which has been suggested before based on genetic and epigenetic alterations [9,12,32,33].
Cross-talk between the PI3K/AKT/mTOR pathway and the MAPK pathway has been described in
neuroendocrine neoplasms and other cancer types, and dual inhibition of these pathways has been
shown to be more effective in in vitro and in vivo neuroendocrine neoplasm models [34–36]. Despite
accumulating evidence implicating the MAPK pathway in PNENs, clinical trials studying the effect of
MAPK pathway inhibition are currently lacking [37]. “Telomere maintenance” was another enriched
gene set, which is interesting since DAXX and ATRX, among the most frequently mutated genes in
PNENs, play a role in telomere maintenance and since it has been highlighted as one of the four
main altered pathways in PNENs [8,9]. In addition, also other epigenetically regulated processes
such as chromatin and chromosome condensation are situated in the top GO categories, which again
supports the importance of epigenetic deregulation in PNENs. Platelet-related pathways were also
enriched, which has been observed previously by Tirosh et al. in familial PNENs [12]. It has been
shown that PNEN patients with tumor-associated platelets have a worse prognosis, possibly through
modulation of the platelet behavior [38]. Another enriched gene set was olfactory receptors. Although
a clear mechanistic link between PNENs and olfactory signaling is currently lacking, there is increasing
evidence for a higher expression of olfactory receptors in different cancer tissues [39]. For example,
a high expression of OR51E1 has been found in small intestinal neuroendocrine neoplasms [40]. Hence,
this could be an avenue worth exploring in further research.

Enrichment analysis for both differential methylation of individual probes and DMRs has
highlighted altered DNA methylation in genes related to the immune system. To further explore this,
we have evaluated a subset of the EPIC cohort samples for the presence of stromal TILs. In general,
a low percentage of TILs (≤5%) was observed with only three samples that had a percentage of
TILs between 5% and 30%. This observation is in accordance with the accumulating literature that
attempts to unravel the immune landscape of PNENs and which reports a presence of TILs within
the tumor microenvironment of PNENs, but mostly in very small numbers [41–43]. In addition,
the loss of expression of MHC I class molecules and altered expression of immunomodulatory factors
has been reported in PNENs and might allow them to evade control of the immune system [41,42].
Several of the master regulator proteins, differentially expressed proteins with an important role in
tumorigenesis, that were identified by Alvarez et al. in gastroenteropancreatic NENs (GEP-NENs)
were immunomodulatory factors [44]. This also suggests an important role for immune modulation
in GEP-NENs and DNA methylation might be a mechanism to regulate the gene expression of these
proteins. Multiple studies evaluating immunotherapy in well-differentiated GEP-NENs are ongoing,
but so far, observed response rates have been low [45,46]. Possible explanations are the cold immune
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microenvironment, i.e., the lack of immune cells, which might be caused by the described immune
modulation in GEP-NENs resulting in immune evasion, and the low tumor mutational burden in
GEP-NENs, as a high tumor mutational burden has been shown to associate with an increased benefit
of immunotherapy [47]. Additional integrated studies on epigenomic, transcriptomic and proteomic
level towards these immunomodulatory mechanisms in GEP-NENs might identify possible therapeutic
targets that allow to prime these tumors for immunotherapy.

Recently, two subtypes of PNENs with different clinical outcomes have been described and these
types were suggested to be linked to cell-of-origin [15,16]. Chan et al. distinguished the different types
based on mutation status of ATRX/DAXX/MEN1 (A-D-M) and showed that the A-D-M mutated tumors
had an alpha cell signature [15]. Cejas et al. used enhancer signatures of chromatin immunoprecipitation
sequencing to distinguish two subtypes, which they defined as A and B, and that were alpha or beta
cell-like, respectively, based on their expression profiles [16]. In addition, they also distinguished
the subtypes using immunohistochemistry for ARX and PDX1, two important transcription factors for
alpha and beta cell differentiation, respectively.

As DNA methylation plays a crucial role in cell differentiation and determines the expression of
cell type-specific transcription factors, we aimed to assess for the first time whether DNA methylation
of the PDX1 gene region allowed distinguishing the two subtypes and to assess its prognostic value.
This analysis was performed in an extensive and global cohort of 83 PNENs, for which long-term
follow-up data were present for many. Unsupervised hierarchical clustering based on the PDX1
methylation data showed two subpopulations, of which, one contained the alpha cells, the A type
cluster, and the other contained the beta cells, the B type cluster. An amount of 21 PNENs belonged to
subtype B and 62 to subtype A. There was a significant association between mutation status and subtype,
with most mutated PNENs being of subtype A, in accordance with the literature [15]. However, two
PNENs with ATRX mutations, of which, one was subclonal, were of subtype B. Cejas et al. has also
observed an alternative lengthening of telomeres (ALT), which is associated with DAXX and ATRX
mutations, in approximately 14% of subtype B PNENs [11,16]. Although ATRX/DAXX/MEN1 mutations
are thus not exclusively observed in PNENs of subtype A, they are clearly more common in this subtype,
suggesting that subtype A PNENs are more prone to acquire mutations in these genes. Furthermore,
we also identified an association with functional PNENs, linking functional tumors to cell-of-origin,
as has been described [14]. The only glucagonoma in our cohort, which is thought to originate from
alpha cells, was assigned to subtype A. Eight insulinomas were included in the study, of which, six
were assigned to subtype B, which would be expected as they supposedly originate from beta cells
based on their hormone production [14]. Of the two subtype A insulinoma patients, one relapsed
after a period of 10 years and died of her disease, while the other had a large tumor that had acquired
an ATRX mutation, which is supposed to be a later stage alteration [11]. Possibly these two subtype
A insulinomas were more aggressive. Most insulinomas are indolent tumors, but 10% of the insulinoma
patients develop metastasis, which drastically worsens prognosis [48]. Due to the rarity of these tumors,
the molecular basis for these differences remains unclear. YY1 was shown to be recurrently mutated
in insulinomas, while mutations in ATRX/DAXX/MEN1 are very uncommon [49]. Hackeng et al.
performed immunohistochemistry for PDX1 and ARX in 37 insulinomas [50]. Five patients were
metastatic at diagnosis or developed metastases and one of these was PDX1-negative and they were all
ARX-positive, while the others did not express ARX. Transdifferentiation of ARX-positive PNENs to
insulin-producing PNENs could provide an explanation for these observations and the more malignant
behavior of these exceptional insulinomas [50–52]. The identification of PNENs that produce different
combinations of neuroendocrine hormones and the observation that the RNA expression of hormones
can differ between primary tumor and metastases supports this hypothesis that assumes that specific
hormone production can become disrupted [15,21]. The other functional PNENs in our study are
divided over the two subtypes. For an improved understanding of their cell-of-origin, it would be
interesting to determine the genome-wide DNA methylation profile of all endocrine cell types in
the pancreas of which data are currently lacking.
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The presence of distant metastasis at diagnosis and recurrence after surgery are significantly more
common for subtype A PNENs, and a trend towards significance was observed for LVI at diagnosis.
The subtypes did not differ regarding WHO grade or tumor size. Furthermore, CoxPH modeling
showed that subtype B had a better overall survival compared with subtype A (HR: 0.22 [95% CI:
0.051–0.95], p = 0.043). This is in line with previous studies that report a better outcome in A-D-M
WT PNENs and B type PNENs [15,16]. In addition, CoxPH analysis in a patient subset without
distant metastasis at diagnosis showed a trend towards significance (HR of 0.16 [95% CI: 0.019–1.4],
p = 0.092), hinting that the observed effect of subtype on survival is not only due to its association with
the presence of metastasis at diagnosis.

CNA profiles were generated for the two subtypes, based on EPIC array data of 26 PNENs.
The observed chromosomal alterations often entailed whole chromosomes and the affected
chromosomes matched with previous reports [53,54]. The comparison of the CNA profiles of
both subtypes suggested a difference in CNA pattern. Interestingly, subtype A PNENs had losses
in chr6, which contains the DAXX gene which is frequently mutated in subtype A tumors, while
gains of this chromosome were observed in subtype B PNENs. In the COSMIC cancer census gene
list (COSMIC v91), no amplifications in genes on chr6 have been linked to cancer. However, deletion
of PRDM1 and TNFAIP3 on chr6 has been linked to cancer [55]. In addition, subtype B PNENs
frequently had gains in chr8, while alterations in this chromosome were rarely observed in subtype
A PNENs. In the COSMIC cancer census gene list, the MYC, NSD3 and KAT6A genes on chr8 have
been amplified in cancer [55]. Of these three genes, only MYC has been studied in PNENs [56]. MYC
is an oncogenic transcription factor which was found highly expressed in 81% of PNEN patients.
It is a downstream target of the AKT/mTOR pathway, but also seemed to upregulate this pathway
through negative regulation of PTEN. Therefore, it was suggested that the MYC expression might be
a resistance mechanism against everolimus treatment and that MYC might be a potential therapeutic
target [56]. The differences in CNA pattern and A-D-M mutations between the two subtypes might
suggest alternative molecular driver mechanisms. However, molecular analysis in a larger cohort
and with a dedicated technique, such as whole-genome sequencing, might provide an improved
and more detailed understanding of the molecular profile of the subtypes. In addition, Lawrence et al.
showed that copy number profiling can also be used to perform subtyping in PNENs, therefore, it
might be interesting to combine both approaches in a follow-up study [21].

Our study has validated DNA methylation profiling of PDX1 as an alternative method to perform
subtyping of PNENs. The two identified subtypes have a different prognosis and a different risk of
relapse, which would support a different strategy in clinical follow-up, with a closer follow-up for
subtype A patients. In addition, also at the molecular level, the two subtypes seem different, with
different CNA patterns and with ATRX/DAXX/MEN1 mutations more commonly observed in subtype
A PNENs. Possibly, the molecular driver mechanisms in these PNEN subtypes differ, which could
require different treatment strategies, but further molecular and clinical research is required.

4. Materials and Methods

4.1. Study Population

Patients that were diagnosed between 2003 and 2018 with a well-differentiated PNEN and that
underwent surgery for their tumor were included. All patients were older than 18 years of age. Residual
tumor tissue was snap-frozen after surgery and stored at −80 ◦C. The Belgian Virtual Tumorbank
was used to identify Belgian centers that had these samples available [20]. Samples were collected in
Belgium from the biobank at the Antwerp University Hospital (biobank@UZA, Antwerp, Belgium; ID:
BE71030031000; Belgian Virtual Tumourbank funded by the National Cancer Plan, BBMR-ERIC; No.
Access: 3, Last: August, 22, 2018) [19], the "biothèque" of the University of Liège (BUL)—University
Hospital (CHU) Liège and the tumor bank of the University Hospital Brussels (UZ Brussel) and in
New Zealand from the Cancer Society Tissue Bank, University of Otago, NZ and Auckland Region
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Hospitals [21]. In addition, clinicopathological data of the included patients were collected. WHO
grade is reported according to the WHO 2017 classification system [57].

Fresh frozen pancreatic islets from 5 different donors were purchased from Prodo Laboratories
Inc., which provides pancreatic islets with research consent from Organ Procurement Organizations
(OPOs). All human islet samples had a viability of 95% and a purity of 85%–95%.

The study was approved by the local ethics committee of Antwerp University
Hospital/University of Antwerp (approval number 16/46/490) and by the New Zealand Health
and Disability Ethics committee (approval numbers 13/NTA/69 and 13/NTB/173).

4.2. Tissue Procurement and Nucleotide Extraction

For all tumor blocks, a fresh frozen hematoxylin-eosin (HE)-stained section was reviewed by
a dedicated pathologist to confirm diagnosis and estimate the tumor cell percentage and for a subset to
evaluate the presence of stromal tumor-infiltrating lymphocytes (TILs) (according to the International
TILs Working Group recommendations [58]). Only samples with a tumor cell percentage higher than
60% were included. Fifteen 10 µm slides of fresh frozen tumor tissue or 1000 islet equivalents (IEQs)
were used as the input for the DNA isolation using the AllPrep DNA/RNA Micro kit (Qiagen, Hilden,
Germany). DNA quality and DNA concentration were measured using the NanoDrop (Thermo
Scientific, Wilmington, DE, USA) and Qubit 2.0 fluorometer with the dsDNA Broad-Range Assay
(Thermo Scientific), respectively.

Sample processing of the New Zealand cohort has been described previously [21].

4.3. Mutation Analysis

Whole-exome sequencing of 22 patients (UZA-01–UZA-10 and Lawrence-001–Lawrence-012)
and deep targeted sequencing of 3 patients (Lawrence-013–Lawrence-015) has been performed in
previous studies [21,27]. The identified variants in MEN1, DAXX and ATRX were validated using
Sanger sequencing, if the allelic ratio was high enough, and are summarized in Table 2.

Table 2. Overview of mutations in DAXX, ATRX or MEN1 identified in 25 patients (UZA-01–UZA-10
and Lawrence-001–Lawrence-015).

Patient Gene Mutation Allelic Ratio WES Sanger Validated?

UZA-01 MEN1 chr11:64572212 CG > C (frameshift) 100% Yes
UZA-01 MEN1 chr11:64571924 G > T (stopgain) 11% No
UZA-03 DAXX chr6:33288573 G > A (stopgain) 60% Yes
UZA-06 DAXX chr6:33289250 G > A (missense) 8% No
UZA-07 MEN1 chr11:64575561 C > A (missense) 53% Yes
UZA-07 DAXX chr6:33287917 C > A (stopgain) 48% Yes
UZA-08 ATRX chrX:76938655 T > C (missense) 5% No

Lawrence-001 MEN1 chr11:64577293 T/TC (frameshift) / Yes
Lawrence-002 MEN1 chr11:64575561 C/CA (frameshift) / Yes
Lawrence-003 MEN1 chr11:64575530 C/T (missense) / Yes

Lawrence-004 MEN1 chr11:64573723 TGTCCGCCCAGGC/T
(in-frame deletion) / Yes

Lawrence-004 ATRX chrX:76944420 TCTAGGAGAAAGGA/T (splicing) / Yes
Lawrence-006 MEN1 chr11:64572613 G/GCAA (in-frame insertion) / Yes
Lawrence-008 MEN1 chr11:64573744 CT/C (frameshift) / Yes
Lawrence-009 ATRX chrX:76813035 C/A (stopgain) / Yes
Lawrence-011 MEN1 chr11:64572078 63Nucleotides/G (frameshift) / No
Lawrence-011 DAXX chr6:33287491 33Nucleotides/C (frameshift) / Yes
Lawrence-012 MEN1 chr11:64577329 TAGAC/T (frameshift) / Yes
Lawrence-012 ATRX chrX:76778831 CTACAAT/C (in-frame deletion) / Yes
Lawrence-013 MEN1 chr11:64572643 G/A (stopgain) / Yes
Lawrence-014 MEN1 chr11:64575550 C/A (missense) / Yes
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4.4. DNA Methylation Analysis

An amount of 500 ng of DNA was used as the input for bisulfite conversion using the EZ DNA
methylation kit (Zymo Research, Freiburg, Germany). The 26 Belgian samples and the 15 New Zealand
were subjected to genome-wide DNA methylation analysis using the Infinium MethylationEPIC array
(Illumina, San Diego, CA, USA) and the Infinium HumanMethylation450K BeadChips (Illumina),
respectively. The iScan system (Illumina) was used to scan the arrays, generating raw IDAT files.

4.5. Additional DNA Methylation Data

Infinium HumanMethylation450K BeadChips (Illumina) DNA methylation data of additional
PNEN patients and alpha and beta cell samples were collected from public repositories (Figure 1).
Neimann et al. isolated alpha and beta cell samples from, respectively, two and three donors
and subjected the samples to DNA methylation analysis [17]. Furthermore, DNA methylation data were
obtained from 32 PNENs analyzed by Chan et al. [15], 5 PNENs analyzed by Timp et al. [22] and 5 PNENs
analyzed within the PAAD project of the TCGA Research Network (https://www.cancer.gov/tcga). We
obtained available clinicopathological data and included the mutation status of the ATRX, DAXX
and MEN1 genes, if available.

4.6. Exploratory DNA Methylation Data Analysis

Data analysis was performed in R version 3.5 for the analysis with ChAMP and version 3.6
for the other analyses. Read-in of the raw IDAT files was performed using the Minfi package [59],
and for further analysis, including quality control, filtering and normalization, the ChAMP package
version 2.12.2 was implemented [23]. After data read-in, methylation values for CpGs were calculated,
which are represented as beta values between 0 and 1, with a value of 0 being not methylated and a value
of 1 being completely methylated. Next, filtering was performed using ChAMP, including filtering
of underperforming probes, which can be due to the presence of single nucleotide polymorphisms
(SNPs), non-unique mapping or off-target hybridization, based on Zhou et al. [60]. Normalization
using the BMIQ method was performed to correct for the differences in dynamic range between
the two probe technologies used for the DNA methylation arrays [61]. The normalized beta values
were used for further analysis. Singular value decomposition (SVD) analysis within the ChAMP
package was used to determine which parameters contribute to variability in the data, as the cut-off of
significance to identify technical sources of variation 0.01 was used. ChAMP implements the limma
package, which uses linear modelling to calculate a p-value for differential methylation of individual
probes, to identify differentially methylated probes (DMPs) [62]. Benjamini–Hochberg multiple testing
correction was applied to the p-values and an adjusted p-value ≤ 0.05 was required for a CpG to be
identified as a DMP. To identify differentially methylated regions (DMRs), extended genomic regions
with a quantitative difference in DNA methylation between two groups, the default method in ChAMP,
namely Bumphunter, was used [63]. Settings were default, except the minimal number of probes
which was set at 3. Gene set enrichment analysis was carried out using the methylRRA function with
method GSEA of the methylGSA package, which adjusts for the number of CpGs in each gene [24].
Analysis was done for the Reactome, Gene Ontology (GO) and KEGG gene sets. For annotation
and gene set enrichment analysis of DMRs, the Genomic Regions Enrichment of Annotations Tool
(GREAT) v3.0.0 was used [25].

4.7. PDX1 Data Analysis

All CpGs situated in the region of the PDX1 gene (chr13:28480000–28510000), as described by
Cejas et al. [16], that are common between 450K and EPIC arrays, were selected. Normalized beta
values of all tumor samples and alpha and beta cells for these CpGs were used to perform unsupervised
hierarchical clustering analysis with pvclust [64]. Euclidean distance was used as the distance measure,

https://www.cancer.gov/tcga
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Ward’s minimum variance as the method for hierarchical clustering and 1000 bootstrap replications
were performed. The dendextend package was used for generating the dendrogram [65].

4.8. Copy Number Alteration Calling

Identification of copy number alterations (CNAs) was performed using the conumee package
v1.18 in R with default settings, which has a minimal binsize of 50 kb [26]. Then, circos plots were
created to visualize the frequency of gains (log2 ratio ≥ 0.150) and losses (log2 ratio ≤ −0.150) of groups
of samples [66].

4.9. Statistical Analysis

Statistical analysis was performed in R version 3.6. Fisher’s exact test was used to test associations
between two categorical variables. The t-test was used to determine differences in normally distributed
continuous variables between two groups and the Mann–Whitney test for non-normally distributed
continuous variables. Overall survival analysis was performed via univariate and multivariate
Cox proportional hazards regression modeling and proportionality was confirmed using Schoenfeld
residuals. The obtained p-values were plotted on Kaplan–Meier survival curves. All p-values were
based on two-sided hypothesis testing and 0.05 was used as the cut-off for statistical significance.

5. Conclusions

PNENs have a genome-wide DNA methylation profile that is different from normal pancreatic
islets. Enrichment analysis has indicated several pathways that are affected by these DNA methylation
alterations, including the MAPK pathway and immune system-related pathways. In addition,
we showed for the first time that, besides PDX1 expression, also the DNA methylation profile of the PDX1
gene region can be used to distinguish two PNEN subtypes, A and B, and illustrate a link to their
respective cell-of-origin, alpha and beta cells. The two subtypes seem to have different clinicopathological
characteristics, a different molecular profile and a different prognosis, with significantly worse outcomes
in subtype A PNENs.

Supplementary Materials: The following are available online at http://www.mdpi.com/2072-6694/12/6/1461/s1,
Figure S1: Comparison of copy number alteration profiles of (A) UZA-03 and (B) UZA-07 as determined
via whole-exome sequencing (WES, top) and DNA methylation analysis (Methylation, bottom), Table S1:
Clinicopathological data of all included patients, Table S2: Top 10 differentially methylated probes, Table S3:
Results of the gene set enrichment analysis (Reactome, Gene Ontology (GO) and KEGG).
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