2 research outputs found

    Quantum effects in gravitational wave signals from cuspy superstrings

    Get PDF
    We study the gravitational emission, in Superstring Theory, from fundamental strings exhibiting cusps. The classical computation of the gravitational radiation signal from cuspy strings features strong bursts in the special null directions associated to the cusps. We perform a quantum computation of the gravitational radiation signal from a cuspy string, as measured in a gravitational wave detector using matched filtering and located in the special null direction associated to the cusp. We study the quantum statistics (expectation value and variance) of the measured filtered signal and find that it is very sharply peaked around the classical prediction. Ultimately, this result follows from the fact that the detector is a low-pass filter which is blind to the violent high-frequency quantum fluctuations of both the string worldsheet, and the incoming gravitational field.Comment: 16 pages, no figur

    Cosmological evolution of cosmic string loops

    Full text link
    The existence of a scaling evolution for cosmic string loops in an expanding universe is demonstrated for the first time by means of numerical simulations. In contrast with what is usually assumed, this result does not rely on any gravitational back reaction effect and has been observed for loops as small as a few thousandths the size of the horizon. We give the energy and number densities of expected cosmic string loops in both the radiation and matter eras. Moreover, we quantify previous claims on the influence of the network initial conditions and the formation of numerically unresolved loops by showing that they only concern a transient relaxation regime. Some cosmological consequences are discussed.Comment: 12 pages, 4 figures, uses iopart. Improved statistics, numerical robustness discussed in details, references added, note added. Matches published versio
    corecore