2 research outputs found

    Partial trisomy 4q associated with young-onset dopa-responsive parkinsonism.

    Full text link
    peer reviewedOBJECTIVE: To describe a patient who developed a young-onset, dopa-responsive parkinsonism linked to a de novo heterozygous interstitial duplication 4q. DESIGN: Case report. SETTING: Movement Disorder Outpatient Clinic at the University Hospital Centre, Liege, Belgium. Patient A 31-year-old woman. MAIN OUTCOME MEASURES: Clinical, neuroimaging, and genetic data. RESULTS: The duplicated region contains 150 known genes, including the alpha-synuclein (SNCA) gene locus. Motor and 6-[(18)F]fluoro-L-dopa positron emission tomography features are similar to those previously reported in heterozygote SNCA duplication carriers. Altered expression of other genes contained in the duplicated region may contribute to clinical features that are uncommon in the phenotypic spectrum of SNCA multiplications such as delayed developmental psychomotor milestones during infancy and musculoskeletal abnormalities. CONCLUSION: This case report provides new insights on the genetic basis of parkinsonism

    GLRB is the third major gene of effect in hyperekplexia

    No full text
    Glycinergic neurotransmission is a major inhibitory influence in the CNS and its disruption triggers a paediatric and adult startle disorder, hyperekplexia. The postsynaptic α-subunit (GLRA1) of the inhibitory glycine receptor (GlyR) and the cognate presynaptic glycine transporter (SLC6A5/GlyT2) are well-established genes of effect in hyperekplexia. Nevertheless, 52% of cases (117 from 232) remain gene negative and unexplained. Ligand-gated heteropentameric GlyRs form chloride ion channels that contain the a1 and b-subunits (GLRB) in a 2α:3β configuration and they form the predominant population of GlyRs in the postnatal and adult human brain, brainstem and spinal cord. We screened GLRB through 117 GLRA1- and SLC6A5-negative hyperekplexia patients using a multiplex-polymerase chain reaction and Sanger sequencing approach. The screening identified recessive and dominant GLRB variants in 12 unrelated hyperekplexia probands. This primarily yielded homozygous null mutations, with nonsense (n=3), small indel (n=1), a large 95 kb deletion (n=1), frameshifts (n 5 1) and one recurrent splicing variant found in four cases. A further three cases were found with two homozygous and one dominant GLRB missense mutations. We provide strong evidence for the pathogenicity of GLRB mutations using splicing assays, deletion mapping, cell-surface biotinylation, expression studies and molecular modelling. This study describes the definitive assignment of GLRB as the third major gene for hyperekplexia and impacts on the genetic stratification and biological causation of this neonatal/paediatric disorder. Driven principally by consanguineous homozygosity of GLRB mutations, the study reveals long-term additive phenotypic outcomes for affected cases such as severe apnoea attacks, learning difficulties and developmental delay
    corecore