4 research outputs found

    Aerobic degradation of phytoplankton debris dominated by Phaeocystis sp in different physiological stages of growth

    Get PDF
    The aerobic degradation of phytoplankton debris collected in Dutch coastal waters on 2 days in 1991 (15 April and 8 May), representing 2 physiological stages of a phytoplankton spring bloom dominated by Phaeocystis sp., was studied in batch culture experiments. The bacterial production and the concentrations of particulate organic carbon (POC) and dissolved organic carbon (DOG) were monitored over a period of 102 d. Bacterial numbers and biomass were followed for 35 d. All experiments showed a rapid metabolic response of bacteria and a sharp decrease in the concentration of POC and DOC during the first days of the experiments. Thereafter bacterial production rates remained constant, and POC and DOC decreased slowly. Apparently, the phytoplankton debris consisted of a labile, rapidly degradable fraction and a refractory, slowly degradable fraction. The labile fraction comprised approximately 50 % of the debris, and was degraded with a bacterial carbon conversion efficiency of between 10 and 20%. There were no indications that antibiotic compounds present in the algal debris inhibited the degradation. Acrylate, a proposed antibiotic compound which was present in the algal debris, was rapidly degraded in a control experiment. The percentage of the material that had been degraded after 102 d was highest in the experiment with material collected in May. It was concluded that during the early phase of the bloom, more refractory compounds are produced

    Benthic mineralization rates at two locations in the southern North Sea

    No full text
    Benthic oxygen uptake, sulphate reduction and benthic bacterial production were measured at two contrasting locations in the southern North Sea: the shallow and turbulent Broad Fourteens area in the Southern Eight, and the deeper Oyster Grounds, a deposition area, where thermohaline stratification occurs during summer, Oxygen uptake and sulphate reduction showed a clear seasonal pattern in the Broad Fourteens area, indicating a supply of carbon to the benthic system that is closely related to the standing stock of carbon in the water column. This close benthic-pelagic coupling is probably due to the influence of the tide in this part of the North Sea, which keeps the water column permanently mixed, At the Oyster Grounds, no seasonal pattern was observed. Peaks in oxygen uptake and sulphate reduction were found in winter, Irregularly occurring events, such as storms and fishery-related activities, are likely to affect the benthic mineralization patterns in this area, Annual benthic carbon mineralization rates estimated from oxygen uptake rates were 44 gC . m(-2) at the Broad Fourteens, and 131 gC . m(-2) at the Oyster Grounds, of which 26 and 28%, respectively, could be attributed to sulphate reduction (assuming an annual sulphide reoxidation rate of 100%). Although sulphate reduction rates in the southern North Sea are higher than previously suggested, aerobic respiration is the most important pathway for benthic carbon mineralization at the stations visited, Production rates of benthic bacterial carbon measured with labelled leucine were much higher than carbon mineralization rates based on oxygen uptake or sulphate reduction. This may either imply a very high bacterial carbon conversion efficiency, or point to shortcomings in the accuracy of the techniques. A critical evaluation of the techniques is recommended
    corecore