501 research outputs found

    Infinitely divisible nonnegative matrices, MM-matrices, and the embedding problem for finite state stationary Markov Chains

    Full text link
    This paper explicitly details the relation between MM-matrices, nonnegative roots of nonnegative matrices, and the embedding problem for finite-state stationary Markov chains. The set of nonsingular nonnegative matrices with arbitrary nonnegative roots is shown to be the closure of the set of matrices with matrix roots in IM\mathcal{IM}. The methods presented here employ nothing beyond basic matrix analysis, however it answers a question regarding MM-matrices posed over 30 years ago and as an application, a new characterization of the set of all embeddable stochastic matrices is obtained as a corollary

    Augmented saddle point formulation of the steady-state Stefan--Maxwell diffusion problem

    Full text link
    We investigate structure-preserving finite element discretizations of the steady-state Stefan--Maxwell diffusion problem which governs diffusion within a phase consisting of multiple species. An approach inspired by augmented Lagrangian methods allows us to construct a symmetric positive definite augmented Onsager transport matrix, which in turn leads to an effective numerical algorithm. We prove inf-sup conditions for the continuous and discrete linearized systems and obtain error estimates for a phase consisting of an arbitrary number of species. The discretization preserves the thermodynamically fundamental Gibbs--Duhem equation to machine precision independent of mesh size. The results are illustrated with numerical examples, including an application to modelling the diffusion of oxygen, carbon dioxide, water vapour and nitrogen in the lungs.Comment: 27 pages, 5 figure

    Structural electroneutrality in Onsager-Stefan-Maxwell transport with charged species

    Full text link
    We present a method to embed local electroneutrality within Onsager-Stefan-Maxwell electrolytic-transport models, circumventing their formulation as differential systems with an algebraic constraint. Flux-explicit transport laws are formulated for general multicomponent electrolytes, in which the conductivity, component diffusivities, and transference numbers relate to Stefan-Maxwell coefficients through invertible matrix calculations. A construction we call a `salt-charge basis' implements Guggenheim's transformation of species electrochemical potentials into combinations describing a minimal set of neutral components, leaving a unique combination associated with electricity. Defining conjugate component concentrations and fluxes that preserve the structures of the Gibbs function and energy dissipation retains symmetric Onsager reciprocal relations. The framework reproduces Newman's constitutive laws for binary electrolytes and the Pollard-Newman laws for molten salts; we also propose laws for salt solutions in two-solvent blends, such as lithium-ion-battery electrolytes. Finally, we simulate a potentiostatic Hull cell containing a non-ideal binary electrolyte with concentration-dependent properties

    Finite element methods for multicomponent convection-diffusion

    Get PDF
    We develop finite element methods for coupling the steady-state Onsager–Stefan–Maxwell (OSM) equations to compressible Stokes flow. These equations describe multicomponent flow at low Reynolds number, where a mixture of different chemical species within a common thermodynamic phase is transported by convection and molecular diffusion. Developing a variational formulation for discretizing these equations is challenging: the formulation must balance physical relevance of the variables and boundary data, regularity assumptions, tractability of the analysis, enforcement of thermodynamic constraints, ease of discretization and extensibility to the transient, anisothermal and nonideal settings. To resolve these competing goals, we employ two augmentations: the first enforces the definition of mass-average velocity in the OSM equations, while its dual modifies the Stokes momentum equation to enforce symmetry. Remarkably, with these augmentations we achieve a Picard linearization of symmetric saddle point type, despite the equations not possessing a Lagrangian structure. Exploiting structure mandated by linear irreversible thermodynamics, we prove the inf-sup condition for this linearization, and identify finite element function spaces that automatically inherit well-posedness. We verify our error estimates with a numerical example, and illustrate the application of the method to nonideal fluids with a simulation of the microfluidic mixing of hydrocarbons
    • …
    corecore