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We develop finite element methods for coupling the steady-state Onsager–Stefan–Maxwell (OSM)
equations to compressible Stokes flow. These equations describe multicomponent flow at low Reynolds
number, where a mixture of different chemical species within a common thermodynamic phase is trans-
ported by convection and molecular diffusion. Developing a variational formulation for discretizing these
equations is challenging: the formulation must balance physical relevance of the variables and boundary
data, regularity assumptions, tractability of the analysis, enforcement of thermodynamic constraints, ease
of discretization and extensibility to the transient, anisothermal and nonideal settings. To resolve these
competing goals, we employ two augmentations: the first enforces the definition of mass-average velocity
in the OSM equations, while its dual modifies the Stokes momentum equation to enforce symmetry.
Remarkably, with these augmentations we achieve a Picard linearization of symmetric saddle point type,
despite the equations not possessing a Lagrangian structure. Exploiting structure mandated by linear
irreversible thermodynamics, we prove the inf-sup condition for this linearization, and identify finite
element function spaces that automatically inherit well-posedness. We verify our error estimates with
a numerical example, and illustrate the application of the method to nonideal fluids with a simulation of
the microfluidic mixing of hydrocarbons.

Keywords: finite element methods; compressible Stokes equations; Stefan–Maxwell equations; multi-
component diffusion; linear irreversible thermodynamics; Stokes–Onsager–Stefan–Maxwell equations.

1. Introduction

Many fluids consist of mixtures; for example, air is a mixture of nitrogen, oxygen, carbon dioxide and
other species. In many situations, it is not necessary to resolve the motions of the individual species, such
as when modelling the flow of air over an aircraft. However, in other contexts, detailed knowledge of
the transport of individual species is required. Examples include biological applications, where one may
be interested in the transport of oxygen and carbon dioxide in blood, in chemical engineering, where
one may be interested in separating or combining the constituents of petroleum, or in electrochemistry,
where the performance of a lithium-ion battery is often limited by the transport of lithium ions within an
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2 F. R. A. AZNARAN ET AL.

electrolyte. We describe this situation as a multicomponent flow, where a fluid is composed of 2 ≤ n ∈
N+ distinct chemical species in a common thermodynamic phase. The primary contributions of our work
are a novel variational formulation of a system of equations describing nonideal miscible isothermal
multicomponent flow, a Picard linearization of these equations that possesses symmetric saddle point
structure (despite the equations not arising from a Lagrangian) and the numerical analysis of a structure-
preserving finite element discretization. In particular, we identify the structural relationships required of
the finite element spaces for the different variables that allow for the continuous well-posedness to be
inherited automatically in the discretization.

More specifically, this work considers multicomponent flow in the concentrated (i.e. general)
solution regime, as opposed to the simpler and more commonly studied dilute solution regime. We now
provide an overview of this distinction, for self-containment. The dilute approximation applies when a
single species called the solvent (conventionally assigned index i = n) is taken to have a concentration
very far in excess of the remaining species (i < n), each of which is called a solute; for example, a
classical problem in computational fluid dynamics concerns the tracking of tracers, present in small
proportions in a solvent by which they are convected. Thus, if Ω ⊂ Rd (d ∈ {2, 3}) is the domain
containing the mixture, the fluid density ρ : Ω → R (kg/m3) varies negligibly with solute content in a
dilute solution and approximately coincides with the mass density of the pure solvent. This decouples the
flow, thematerial’s bulkmotion, from themass transport, themotion of individualmolecular constituents
comprising the material. One can thus solve for the flow velocity, and then employ this velocity in a
system of independent advection-diffusion equations for the mass transport of each species. A typical
dilute solution problem—which, we emphasize, we do not consider in this paper—at low Mach number
(where the density is assumed constant) is to solve:

∂(ρv)

∂t
− div (2ηε(v)) + div (ρv ⊗ v) + ∇p = ρf , (1.1a)

div v = 0, (1.1b)

∂ci

∂t
+ div

(
civ

) + div Ji = ri, i = 1, . . . , n − 1, (1.1c)

Ji = −Di∇ci, i = 1, . . . , n − 1, (1.1d)

where Ω is bounded Lipschitz, v : Ω → Rd is the flow velocity (m/s), ε the symmetric gradient
operator ε(v) := 1

2 (∇v + (∇v)	) (1/s), η > 0 the shear viscosity (Pa · s), p : Ω → R the pressure
(Pa), f : Ω → Rd the body acceleration (m/s2) induced within Ω due to the action of external fields,
ci : Ω → R the molar concentration (mol/m3) of solute i in the solution, Ji : Ω → Rd its diffusive flux
(mol/m2s), ri : Ω → R its volumetric rate of generation or depletion (mol/m3s), and Di > 0 its Fickian
diffusion coefficient (m2/s). The velocity vi : Ω → Rd (m/s) of each individual species is given by

civi = civ + Ji, (1.2)

decomposing the transport of each species into a convective and a diffusive contribution. The dilute
solution regime is characterized by the approximation v ≈ vn, that the bulk motion of the fluid coincides
with the motion of the solvent.
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FINITE ELEMENT METHODS FOR MULTICOMPONENT CONVECTION-DIFFUSION 3

While the dilute solution approximation has been applied to great effect (Levich, 1962; Bird et al.,
2002; Cussler, 2009; Deen, 2016), it fails starkly when no particular species is present in great excess, the
concentrated solution regime of interest in this work. Several problems arise when attempting to relax
the dilute solution approximation and formulate and discretize models for concentrated solutions. In
concentrated solutions the very notion of ‘flow velocity’ becomes ambiguous, because the bulk motion
of the fluid need not coincide with any particular species velocity and these species velocities in general
will be distinct. One can still identify a natural composition-dependent definition of v in the concentrated
case, however. The density of the fluid is given by

ρ :=
n∑

i=1

Mici, (1.3)

in which Mi > 0 represents the molar mass (kg/mol) of species i. Using (1.2), the continuity equations
(1.1c) may be rephrased in terms of species velocities as

∂ci

∂t
+ div(civi) = ri, i = 1, . . . , n. (1.4)

Time differentiation of (1.3), followed by elimination of the concentration derivatives with (1.4), yields

∂ρ

∂t
=
∑

i

Mi

(
ri − div

(
civi

)) = −div

(∑
i

Micivi

)
. (1.5)

Here, the last equality incorporates the premise that homogeneous chemical reactions conserve atoms,
which requires that

∑
i Miri = 0.1 Equation (1.5) is consistent with the common understanding of mass

continuity if the flow velocity vwithin a multicomponent fluid is identified as the so-calledmass-average
velocity, defined as (Hirschfelder et al., 1954, p. 454)

v :=
∑

i

ωivi, (1.6)

a convex combination in which

ωi :=
Mici

ρ
(1.7)

defines the (dimensionless) mass fraction of species i. Indeed, rewriting (1.5) in terms of the mass-
average velocity yields

∂ρ

∂t
= −div(ρv), (1.8)

1 In multiphase flows, heterogeneous material exchange may occur, leaving a nonzero generation term in the mass continuity
equation for a given phase. We limit the present discussion to single-phase flows.
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4 F. R. A. AZNARAN ET AL.

thereby recovering the mass continuity equation familiar from fluid mechanics. In our formulation we
will solve for both the mass-average velocity and the individual species velocities. The mass-average
velocity is governed by a momentum balance, typically expressed in the form of the Cauchy equation

∂(ρv)

∂t
− div τ + div (ρv ⊗ v) + ∇p = ρf , (1.9)

where τ : Ω → Rd×d
sym is the dissipative (viscous) internal stress tensor (Pa),2 to be specified with a

constitutive law. If Newton’s law of viscosity is used, then (1.9) reduces to the Navier–Stokes momentum
equation (1.1a).

Another issue to address when moving to the concentrated solution regime is the choice of
constitutive law for the diffusive fluxes. In dilute solutions each solute interacts at a molecular level
almost solely with solvent molecules, and so the diffusive solute fluxes Ji can each be modelled by Fick’s
law (Fick, 1855). In concentrated solutions the constitutive laws for mass transport become incomplete,
because Fick’s law (1.1d) fails to take into account all possible species-species interactions. Even in the
case of simple diffusion (where v = 0 uniformly), the diffusive flux of a given species can generally
be driven by a concentration gradient of any other species in the solution—a phenomenon known as
cross-diffusion. The theory of linear irreversible thermodynamics, pioneered byOnsager (1931a,b, 1945),
enables the thermodynamically consistent generalization of Fick’s law (1.1d) to the concentrated solution
regime. This formalism is described in the next subsection.

1.1 Onsager–Stefan–Maxwell equations

Within a multi-species solution, the Onsager–Stefan–Maxwell (OSM) equations relate the diffusion
driving forces di : Ω → Rd to the species velocities vi via

di =
∑

j

Mijvj, i = 1, . . . , n, (1.10)

where the diffusion driving forces di (Pa/m) incorporate the effects of various state variable gradients
(Giovangigli, 1999, Eq. (2.5.4)), and where M is the Onsager transport coefficient matrix with entries

Mij =
{−RTcicj

DijcT
if i �= j,∑n

k=1,k �=i
RTcick
DikcT

if i = j.
(1.11)

Here R > 0 is the ideal gas constant (J/mol · K), T > 0 the ambient temperature (K), cT denotes the
total concentration defined as

cT :=
∑

i

ci, (1.12)

and Dij ∈ R represents the Stefan–Maxwell diffusivity (m2/s) of species i through species j �= i. The
Stefan–Maxwell diffusivities are symmetric in the species indices, Dij = Dji, and Dii is not defined.

2 In general, an internal stress τ is characterized by
∫
∂M τ ds expressing the net force exerted on the surroundings by a volume

M ⊂ Ω on the closed surface ∂M that bounds it.
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FINITE ELEMENT METHODS FOR MULTICOMPONENT CONVECTION-DIFFUSION 5

In the present discussion we restrict attention to the case where every Dij is constant, which in turn
requires each to be positive (Van-Brunt et al., 2021), but in general the Stefan–Maxwell diffusivities
may depend on the species concentrations, temperature and pressure. (1.10) is often presented as

di =
n∑

j=1
j �=i

RTcicj

DijcT
(vi − vj), (1.13)

which follows from (1.10) and (1.11).
In an isothermal but nonisobaric fluid, the diffusion driving forces may be identified as (Bird et al.,

2002, Eq. (24.1-8))

di := −ci∇μi + ωi∇p, i = 1, . . . , n, (1.14)

in which μi : Ω → R is the chemical potential (J/mol) of species i. The chemical potential represents
the partial derivative of the Gibbs free energy (a quantity describing the total amount of work a system
can deliver to isothermal, isobaric surroundings) with respect to the number of moles of a given species
i at constant temperature and pressure, and holding the molar contents of all other species fixed. Under
isothermal conditions, chemical potentials are related to the concentrations and pressure via a constitutive
law, discussed below in Section 1.4.

As a consequence of the statistical reciprocal relations developed by Onsager (1931a,b) and the
second law of thermodynamics, the transport matrix M is everywhere symmetric positive semidefinite
(Monroe et al., 2015). Thus, the Stefan–Maxwell diffusivities are symmetric in the species indices,
Dij = Dji. There is a single null eigenvalue, with eigenvector (1, . . . , 1)	:

∑
j

Mij = 0. (1.15)

This nullspace is necessary to distinguish convection, which is nondissipative, from diffusion. A
consequence of this nullspace is that one may shift each vi in (1.10) by the mass-average velocity,

di =
∑

j

Mij

(
vj − v

)
, i = 1, . . . , n, (1.16)

so that the transport matrix acts on terms proportional to the diffusive flux Ji. Thus (1.10) can be
understood as an implicit constitutive relation for the diffusive fluxes (Bulíček et al., 2021).

The symmetry of M combined with (1.15) allows one to show that

∑
i

di =
∑

i

(−ci∇μi + ωi∇p
) = 0, (1.17)

an expression of the isothermal, nonisobaric Gibbs–Duhem equation from equilibrium thermodynamics.
For further detail on the historical development and mathematical structure of the OSM equations, we
refer the reader to Van-Brunt et al. (2021).
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6 F. R. A. AZNARAN ET AL.

1.2 Stokes equation

A further consequence of the nullspace of M (1.15) is that the species velocities cannot be determined
from the diffusion driving forces alone. They can be recovered, however, by incorporating the Cauchy
momentum equation (1.9) to specify the mass-average velocity (1.6), which is required for a complete
description of the overall transport problem; this in turn requires a constitutive law for the viscous
stress. For isothermal Newtonian fluids, the viscous stress τ relates to the linearized strain rate ε(v),
the symmetric part of the velocity gradient, through

τ = 2η

(
ε(v) − tr ε(v)

d
I

)
+ ζ tr(ε(v))I, (1.18)

where ζ > 0 is the bulk viscosity (Pa · s), or equivalently

ε(v) = 1

2η
τ +

(
1

d2ζ
− 1

2ηd

)
(tr τ)I =: A τ , (1.19)

where A : Rd×d
sym → Rd×d

sym denotes the compliance tensor. The full Cauchy stress σ : Ω → Rd×d
sym (Pa)

may then be decomposed as

σ = τ − pI. (1.20)

We further consider steady-state creeping flow, under which assumptions Stokes’ equation,

div τ − ∇p = −ρf , (1.21)

follows from the momentum balance (1.9).
The OSM equations (1.10) are written in force-explicit form: the equations express the species

velocities (fluxes) as implicit variables. We choose also to write the Newtonian constitutive equation
(1.19) in this manner, expressing the thermodynamic force (the linearized strain rate) in terms of the
corresponding flux (the viscous stress) (Hirschfelder et al., 1954). Typically in computational fluid
dynamics, a flux-explicit formulation is obtained by using an explicit constitutive relation such as (1.18)
to eliminate the Cauchy and viscous stresses in the first instance. For our overall coupled system (stated
later in (1.29)), we do not eliminate the viscous stress, but include it as an implicit variable to be solved
for. While this choice increases the computational cost, it has substantial benefits; the viscous stress
plays a fundamental role in the calculation of local entropy production, but more significantly, we show
in Section 2 that the resulting system of equations can be cast as a symmetric perturbed saddle point-like
system, which is conducive to both theoretical analysis and (we anticipate) efficient linear solvers.

1.3 Augmentation of the diffusion transport matrix and the Stokes momentum balance

The variational formulation of our equations must enforce the relation (1.6), between the bulk (mass-
average) velocity and the species velocities. We employ the augmentation approach introduced by
Helfand (1960) and later used by Giovangigli (1990); Ern & Giovangigli (1994); Giovangigli (1999).
We augment each OSM equation (1.13) by adding the mass-average velocity constraint (1.6) to both
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FINITE ELEMENT METHODS FOR MULTICOMPONENT CONVECTION-DIFFUSION 7

sides with a prefactor γ > 0:

di + γωiv =
∑
j �=i

RTcicj

DijcT
(vi − vj) + γωi

∑
j

ωjvj. (1.22)

The prefactor γ formally has units of Pa·s/m2. For convenience, we define the augmented transport
matrix

Mγ

ij := Mij + γωiωj, (1.23)

so that (1.22) can be stated as di + γωiv = ∑
j Mγ

ij vj. We may then compute directly

∑
i,j

vi · Mγ

ij vj = 1

2

∑
i,j

j �=i

RTcicj

DijcT
|vi − vj|2 + γ

∣∣∣∣∣∣
∑

j

ωjvj

∣∣∣∣∣∣
2

(1.24)

to show that the augmented transport matrix is symmetric positive definite (Van-Brunt et al., 2021). This
was used in Van-Brunt et al. (2021) to construct coercive bilinear forms for the pure Stefan–Maxwell
diffusion problem. With this augmentation, although the transport matrix is a priori singular, one can
nevertheless recover the species velocities from the driving forces by coupling with the mass-average
velocity constraint (1.6).

The augmentation (1.22) modifies a constitutive law of the system, which will induce coercivity of a
certain bilinear form below. However, this comes at the cost of symmetry. To recover symmetry, we add
a ‘dual’ augmentation to the Stokes equation (1.21)

div τ − ∇p = −ρf + γ
∑

j

ωj(v − vj). (1.25)

With these two augmentations (1.22) and (1.25), an important bilinear form defined later in (3.3a) will
be both symmetric and coercive on an appropriate kernel. This greatly aids the proofs of well-posedness
for the continuous and discrete problems, as we will demonstrate in Section 3.2 and Section 4.1.

To close the equations, we must relate the chemical potentials to the concentrations via a thermo-
dynamic equation of state, discussed next.

1.4 The chemical potential and equation of state

Our variational formulation will solve for the chemical potential μi of each species i. This has several
advantages. First, this allows for a general formula for the diffusion driving forces (1.14), independent
of the materials considered. If we were to make the (perhaps more obvious) choice of solving for
concentrations ci as the primary variables instead, the form of the diffusion driving forces would change
in a material-dependent manner. Second, our choice allows for a decoupling in the linearization we
employ: the primarymixed system to solve only depends on thematerial via the diffusion coefficients and
viscosities, with any nonideality confined to the computation of concentrations and density postprocessed
at every iteration using material-dependent thermodynamic constitutive relations discussed below.
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8 F. R. A. AZNARAN ET AL.

Third, together with the choice to solve for the viscous stress as described in Section 1.2, this decoupling
endows the equations to solve with a symmetric perturbed saddle point-like structure.3

Generally each species concentration ci can be inferred from {μi}n
i=1 and p, given thermodynamically

consistent constitutive laws for the chemical potential, and an equation of state which relates cT to
pressure and composition. Within an isothermal ideal gas, the former relation is simply

ci = p�

RT
exp

(
μi − μ�

i

RT

)
, (1.26)

for some known reference pressure p� and a set of reference chemical potentials {μ�
i }i. A general relation

for nonideal systems is

μi = μ�
i + RT ln(γixi), (1.27)

where xi := ci/cT is themole fraction, and γi the (dimensionless) activity coefficient, of species i. (Within
a system made up of n species, specifying n − 1 mole fractions determines the composition referred to
earlier.) In nonideal solutions, the reference potentials μ�

i generally depend on the temperature and
pressure (Guggenheim, 1985; Atkins & de Paula, 2010); they determine the value of the molar Gibbs
free energy of pure species i at the T and p values of interest. Activity coefficients generally depend
on temperature, pressure and composition; the definition of the reference state further requires that they
approach unity at infinite dilution, i.e. limxi→0 γi = 1. Constitutive laws (1.27) suffice to determine
the mole fractions within nonideal solutions. To obtain the concentrations, elementary thermodynamic
principles can be used to derive a state equation for volume, which may be expressed as

cT = 1∑
i Vixi

, (1.28)

in which Vi > 0 is the partial molar volume (m3/mol) of species i. Formally, the partial molar volume is
a material property that quantifies the change in total fluid volume with respect to the number of moles
of a species i at constant temperature and pressure, holding all other species contents fixed. Maxwell
relations derived from the Gibbs free energy also require that Vi quantifies the partial derivative of μi
with respect to p (Goyal & Monroe, 2017, Eq. (28)). This dependence, part of which is embedded in the
pressure dependence of μ�

i , may be regarded as given data that is experimentally measurable (Doyle &
Newman, 1997). Note that for a definition of the Gibbs free energy in terms of chemical potentials to be
thermodynamically consistent, it must imply the state equation (1.28).

Our linearization below is designed so that the concentrations are calculated from the chemical
potentials and pressure. This trivially guarantees positivity of the concentrations, but more significantly,
the model is able to incorporate nonideality by employing chemical potential constitutive laws more
general than (1.26), such as (1.27). We intend for this choice to facilitate future research into convection-
diffusion problems with alternative equations of state, for which ci may (for example) depend on all μj,
and on temperature.

3 Extensive (but unreported) investigations into alternative tuples of fields for which to solve, and ways to weakly formulate the
resulting fully coupled system, gave rise to ill-posed or analytically intractable Picard linearizations when the concentrations ci,
or their normalizations the mole fractions xi = ci/cT, were solved for as primary unknowns.
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FINITE ELEMENT METHODS FOR MULTICOMPONENT CONVECTION-DIFFUSION 9

1.5 Coupled problem statement

Our goal is to find and analyze a variational formulation and structure-preserving finite element
discretization of the following problem: given data f and {ri}n

i=1, find chemical potentials {μi}n
i=1, viscous

stress τ , pressure p, species velocities {vi}n
i=1 and convective velocity v, satisfying

−ci∇μi + ωi∇p + γωiv =
∑

j

Mγ

ij vj ∀i, (augmented OSM equations) (1.29a)

ε(v) = A τ , (viscous stress constitutive law) (1.29b)

div τ − ∇p − γ
∑

j

ωj(v − vj) = −ρf , (augmented Stokes equation) (1.29c)

div(civi) = ri ∀i, (species continuity equation) (1.29d)

div(v) = div

⎛
⎝∑

j

ωjvj

⎞
⎠, (mass-average velocity constraint) (1.29e)

for an augmentation parameter γ ≥ 0, where {ci,ωi}n
i=1, ρ are functions of the unknowns via thermo-

dynamic constitutive laws such as (1.27) and (1.28), and algebraic relations (1.3), (1.7). We shall
introduce appropriate boundary conditions in Section 2.2. We call the system (1.29) the (augmented)
Stokes–Onsager–Stefan–Maxwell (SOSM) system.4 When the convection term div (ρv ⊗ v) is incorpo-
rated into (1.29c), we call this the Navier–Stokes–Onsager–Stefan–Maxwell (NSOSM) system.

Note that in the system we only directly enforce the divergence of the mass-average velocity
constraint (1.29e), which may be interpreted as the compressible generalization of the standard diver-
gence constraint (1.1b); this choice gives rise to a saddle point-like structure, as we show in the next
section. Nevertheless, the full constraint (1.6) is incorporated via the augmentations (1.22) and (1.25),
as discussed further in Remark 2.2. This constraint reduction, combined with the augmentations, may
be regarded as a principal novelty of the system (1.29).

1.6 Relation to existing literature and outline

For dilute solutions with constant solvent concentration (and no volumetric generation or depletion of
the solvent, rn = 0), the (N)SOSM equations reduce to the incompressible (Navier–)Stokes equations, as
well as convection-diffusion equations constituted by Fick’s law for each solute. These equations have
been studied for many decades, and effective numerical techniques are available. We do not attempt
a systematic review here, but mention Thomée (2006); Hundsdorfer & Verwer (2013); Elman et al.
(2014); Stynes & Stynes (2018) as gateways to this literature. In this regime, the momentum solve and
the equation for the transport of concentration are decoupled using incompressibility.

Our formulation (1.29) solves for the viscous stress as an unknown variable. Of most relevance to
this aspect of our approach is the work of Carstensen et al. (2012), who discretized the stress in an
incompressible stress-velocity Stokes system using the same stress elements of Arnold &Winther (2002)
that we shall employ.

4 The possibility of γ = 0 is allowed as a means to recover the original equations, but our analysis will rely on taking γ > 0.
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10 F. R. A. AZNARAN ET AL.

Related systems of equations have been formulated and analyzed, including the coupling of the
Stefan–Maxwell equations with the incompressible Navier–Stokes equations by Chen & Jüngel (2015),
the compressible Navier–Stokes equations by Bothe & Druet (2021), the Darcy momentum equation
by Ostrowski & Rohde (2020) and the Cahn–Hilliard equations by Huo et al. (2022). The coupling of
an anisothermal NSOSM system to surface phenomena by sorption was formulated by Bothe & Dreyer
(2015); Souček et al. (2019) proposed an extension to the Stefan–Maxwell equations in the presence of
chemically reacting constituents.

Numerical methods for solving the NSOSM equations have received much less attention. The only
works of which the authors are aware are those of Ern, Giovangigli and coauthors, including amonograph
(Ern & Giovangigli, 1994) and a series of other works (Ern & Giovangigli, 1998, 1999; Giovangigli,
1999; Burman et al., 2004) which apply multicomponent transport to combustion modelling for ideal
gas mixtures. These schemes use sophisticated finite difference methods, with the important exception of
Burman et al. (2004), which uses a finite element method with additional least-squares terms to stabilize
the formulation. The authors are unaware of any literature that addresses numerical methods for SOSM
or NSOSM systems in the nonideal case.

For OSMmodels of isobaric ideal gases under simple diffusion, several recent papers have addressed
numerical approaches, including a finite element method proposed by McLeod & Bourgault (2014), a
finite volume method by Cancés et al. (2020) and a finite difference scheme by Bondesan et al. (2019).
Such works typically employ a reference velocity as prescribed data.

Recently a finite element scheme for simple isobaric OSM diffusion in ideal gases was proposed by a
subset of the current authors (Van-Brunt et al., 2021). They solved the augmented OSM equations (1.22)
combined with the species continuity equations (1.29d). The present paper builds on the foundation
established in Van-Brunt et al. (2021), but now fully incorporates momentum, nonideality and pressure-
driven diffusion. In contrast to this prior work, we are able here to avoid a generalized saddle point
formulation, and in Section 3 will derive a symmetric perturbed saddle point system to be solved at
each nonlinear iteration—a more classical linear algebraic structure for which many solvers have been
developed (Benzi et al., 2005). However, due to the more complex form (1.14) of the driving force, and
since we solve for the chemical potentials to allow for nonideal fluids, we are not able to enforce the
Gibbs–Duhem relation (1.17) to machine precision, as achieved in Van-Brunt et al. (2021).

Remark 1.1 Many cross-diffusion systems, such as those describing multiagent systems in mathemati-
cal biology (Carrillo et al., 2018), arise from a gradient flow of an associated entropy functional. Unfortu-
nately, although the OSM system admits an associated thermodynamic energy—the Gibbs free energy—
we are not able to show equivalence of the (S)OSM system to the Euler–Lagrange stationarity condition
of any energy or Lagrangian functional, and hence cannot exploit any gradient flow structure. Instead,
our mathematical line of attack will be to exploit the positive definiteness of the augmented transport
matrix Mγ from (1.23). With our augmentations of the equations, the Picard scheme we propose below
in Section 3 nevertheless gives rise to symmetric linearized problems to solve at each nonlinear iteration.

The remainder of this work is organized as follows. In Section 2, we derive a novel variational
formulation of the fully coupled nonlinear SOSM problem, incorporating boundary conditions and
augmentation terms, as a nonlinear perturbed saddle point-like system, using a novel solution-dependent
test space relating to the thermodynamic driving force; our principal discovery is the duality between
the diffusion driving forces, and the combination of species continuity equations with the divergence of
the mass-average velocity constraint. Section 3 proposes a Picard-like linearization, which is proven to
be well-posed under physically reasonable assumptions. Section 4 identifies appropriate finite element
spaces, and the structural relations which should hold between them, for a well-posed and convergent
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FINITE ELEMENT METHODS FOR MULTICOMPONENT CONVECTION-DIFFUSION 11

discretization of this linearization. We then validate our convergence results numerically. Finally, we
illustrate our method by simulating the steady mixing of liquid benzene and cyclohexane in a two-
dimensional microfluidic laminar-flow device.

2. Variational formulation

We employ standard notation for the Sobolev space Hk(Ω;X) (or L2(Ω;X) when k = 0) with domain
Ω ⊂ Rd and codomain X, and associated norm ‖ · ‖k and seminorm | · |k. We denote by S = Rd×d

sym the
space of d × d symmetric tensors. The symbol � denotes inequality up to a constant that may depend
on mesh regularity, but not mesh spacing h. Let L20(Ω) := {z ∈ L2(Ω) | −

∫
Ω

z dx = 0}. Let Γ = ∂Ω and
let 〈·, ·〉Γ denote the (H−1/2 × H1/2)(Γ ;R or Rd) dual pairing.

2.1 Integrability of pressure gradients

For isothermal, isobaric multicomponent diffusion in an ideal gas mixture as originally considered by
Maxwell (1867) and Stefan (1871), it suffices to work with driving forces of the form

di = −RT∇ci. (2.1)

In a variational formulation of the nonisobaric case, one would like to integrate the pressure gradient
term in our diffusion driving forces (1.14) by parts, to reduce the regularity requirement on p. However,
it is not obvious how to do so, since the mass fractions ωi are spatially varying. Formally, for a species
velocity test function u (omitting surface terms for simplicity),

∫
Ω

u · (ωi∇p) dx = −
∫

Ω

div(uωi)p dx = −
∫

Ω

(ωi div u + u · ∇ωi)p dx, (2.2)

suggesting u be taken from a space requiring at least div u ∈ L2(Ω); however, we wish to avoid the
introduction of the rightmost term into the bilinear forms and instead exploit the coercivity on L2(Ω;Rd)

induced by the augmented Onsager transport matrix (1.24) (as in Van-Brunt et al. (2021)).
In order to rigorously incorporate the effect of pressure-driven diffusion, we are therefore led to

consider the somewhat unorthodox possibility of formulating the Stokes subproblem with pressure lying
in H1(Ω). Typically, the condition that p ∈ H1(Ω) may be provided by elliptic regularity results for the
pressure field, but to the authors’ knowledge, the a priori square-integrability of pressure gradients (i.e.
for which, we emphasize, pressure is defined to lie in H1(Ω)) has not been considered for the Stokes
system, except in the incompressible case (e.g. Beirão et al. (2022), and in the incompressible case at the
discrete level in Stenberg (1989)). This condition is also suggested by the case of pure Stefan–Maxwell
diffusion for nonisobaric ideal gases. Here the driving forces are as follows:

di = −RT∇ci + ωi∇p, (2.3)

which suggests considering each ci (and hence cT) to lie in H1(Ω), which forces the pressure to lie in
the same space due to the ideal equation of state p = cTRT .

In general, one must distinguish between the thermodynamic pressure p, which we use throughout
this paper, and the mechanical pressure pm := −tr σ/d. The mechanical pressure is related to the
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12 F. R. A. AZNARAN ET AL.

spherical Cauchy stress by sph σ := tr σ
d I = −pmI, and to p by

p = pm + ζ div v. (2.4)

In the context of multicomponent flow, this decomposition is discussed in further detail by Bothe &
Dreyer (2015). Even in the simpler incompressible limit where p = pm, we cannot expect extra regularity
of ∇p = −div(sph σ) because H(div;S), the natural space for σ , is not closed under taking spherical
parts.5 Consequently, we do not take p ∈ H1(Ω), but as a compromise consider a weaker condition
defined by the combined viscous stress-pressure space

{(τ , p) ∈ L2(Ω;S) × L2(Ω) | div τ − ∇p ∈ L2(Ω;Rd)}
(
� H(div;S) × H1(Ω)

)
, (2.5)

and assign to it the weaker norm ‖τ‖20 + ‖p‖20 + ‖div τ − ∇p‖20. This space and norm were previously
employed by Manouzi & Farhloul (2001) in an analysis of a non-Newtonian incompressible Stokes
flow where τ was taken to be the deviatoric shear stress. Membership of the space (2.5) is naturally
interpretable as the square-integrability of the divergence of the full Cauchy stress, i.e. that σ = τ −pI ∈
H(div;S). Together with an analogous condition for the chemical potential gradient to be detailed next,
this weaker condition will account for the pressure gradient in the driving forces.6

2.2 Fully coupled variational formulation

In this subsection, we derive a variational formulation for the stationary problem as a nonlinear
perturbed saddle point-like system. We have found the following statement of the problem to be a
feasible tradeoff between the (competing) goals of: physical relevance of variables and boundary data,
regularity assumptions, numerical implementability and effectiveness, analytic tractability of continuous
and discrete well-posedness, enforcement of fundamental thermodynamic relations and extensibility to
the anisothermal and nonideal settings.

For boundary data, we prescribe mass flux and molar fluxes:

ρv = gv ∈ H1/2(Γ ;Rd) on Γ , (2.6a)

civi · n = gi ∈ H−1/2(Γ ) on Γ , i = 1, . . . , n. (2.6b)

For consistency with the mass-average velocity constraint (1.6), we require∑
i

Migi = gv · n, (2.7)

5 In any case, the incompressible regime for which ρ is constant is physically irrelevant to the OSM framework for mass
diffusion, which exhibits spatial heterogeneity of the density. We also remark that, viewing the pressure as a component of the full
Cauchy stress, appealing to the Hodge decomposition of the stress space H(div; S) (Arnold, 2018, Theorem 4.5) does not endow
that component with any extra regularity.

6 One alternative approach is provided by attempting to construct a smoother analogue of the stress elasticity complex associated
with the Cauchy stress space (2.5), for which (2.5) is replaced by some superspace ofH(div;S)×H1(Ω), just as the Stokes complex
is precisely a smoothing of the de Rham complex. We do not pursue this.
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FINITE ELEMENT METHODS FOR MULTICOMPONENT CONVECTION-DIFFUSION 13

with equality in H−1/2(Γ ). We further impose conditions∫
Ω

p dx =
∫

Ω

μi dx = 0, i = 1, . . . , n, (2.8)

on the pressure and chemical potentials. Typically, the equation of state will require or imply strict
positivity of p everywhere, in which case this condition should be understood as −

∫
Ω

p dx = p� > 0
and that p be shifted by the known value p� as a postprocessing step.

Denote an n-tuple of functions by the notation x̃ := {xi}n
i=1. Let Q = L2(Ω;Rd)n × L2(Ω;Rd) with

norm ‖(ṽ, v)‖2Q := ‖ṽ‖20 + ‖v‖20. For formal derivation of the weak form, we assume the solution tuple
(μ̃, τ , p, ṽ, v) to be smooth on Ω , and consider choosing (w̃, s, q) from the solution-dependent potential-
stress-pressure test space

Θ :=
{
(w̃, s, q) ∈ L20(Ω)n × L2(Ω;S) × L20(Ω)

∣∣∣∣ div s − ∇q ∈ L2(Ω;Rd),
−ci∇wi + ωi∇q ∈ L2(Ω;Rd) ∀i

}
. (2.9)

Here it is understood that the {ci,ωi}i are computed from the solution tuple. Multiplying the ith continuity
equation (1.29d) by wi, the divergence of the mass-average velocity constraint (1.29e) by q, and
contracting the stress constitutive law (1.29b) with s, we obtain

∑
i

(
div(civi) − ri

)
wi + div

(
v −

∑
i

ωivi

)
q + (A τ − ε(v)) : s = 0, (2.10)

and hence∫
�

∑
i

(div(civi)wi − div(ωivi)q) + A τ : s − (s − qI) : ε(v) dx =
∫

�

∑
i

riwi dx. (2.11)

Integrating by parts yields∫
�

A τ : s +
∑

i

(−ci∇wi + ωi∇q) · vi + (div s − ∇q) · v dx

= 〈(s − qI)n, v〉� +
∑

i

〈
civi · n,−wi + ωi

ci
q

〉
�

+
∫

�

r̃ · w̃ dx

=
〈
(s − qI)n,

gv
ρ

〉
�

+
∑

i

〈
gi,−wi + Mi

ρ
q

〉
�

+
∫

�

r̃ · w̃ dx. (2.12)

Now for each i = 1, . . . , n, we take the scalar product of ui ∈ L2(Ω;Rd) with the augmented OSM
equation (1.29a) and integrate over Ω to obtain∫

Ω

(−ci∇μi + ωi∇p
) · ui − ui ·

∑
j

Mijvj − γωi

∑
j

ωj(vj − v) · ui dx = 0. (2.13)
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14 F. R. A. AZNARAN ET AL.

Taking the inner product of the augmented Cauchy momentum balance (1.29c) with u ∈ L2(Ω;Rd)

yields

∫
Ω

(div τ − ∇p) · u − γ

⎛
⎝∑

j

ωj(v − vj)

⎞
⎠ · u dx = −

∫
Ω

ρf · u dx. (2.14)

We sum (2.13) over i and add (2.14) to derive (using the symmetry of Mij)∫
Ω

∑
i

(−ci∇μi + ωi∇p) · ui + (div τ − ∇p) · u

−
∑

i,j

vi · Mijuj − γ

⎛
⎝∑

j

ωj(vj − v)

⎞
⎠ ·

(∑
i

ωi(ui − u)

)
dx =

∫
�

−ρf · u dx.

(2.15)

Note that both augmentations (1.22) and (1.25) were involved in deriving this expression.
Finally, we observe that by definition, we have ωi ∈ L∞(Ω) with ‖ωi‖L∞(Ω) ≤ 1. Moreover, we

make the physically reasonable assumptions that the concentrations associated with the solution are
uniformly bounded, ci ∈ L∞(Ω), with ci ≥ κ > 0 almost everywhere (a.e.), as in Van-Brunt et al.
(2021) (which in turn implies Mγ

ij , ρ ∈ L∞(Ω), and ρ ≥ κ
∑

i Mi > 0 a.e.), and that the density

gradient is uniformly bounded, ∇ρ ∈ L∞(Ω;Rd).7

Definition 2.1 (Weak solution to the SOSM equations.) We define a weak solution to the augmented
Stokes–Onsager–Stefan–Maxwell system to be a (2n + 3)-tuple({μi}n

i=1, τ , p, {vi}n
i=1, v

) ∈ L20(Ω)n × L2(Ω;S) × L20(Ω) × L2(Ω;Rd)n × L2(Ω;Rd)︸ ︷︷ ︸
Q

(2.16)

inducing concentrations {ci}n
i=1 through a constitutive law (such as (1.26)) implicitly defining ci =

ci({μi}n
i=1, p) ≥ κ > 0 a.e. for i = 1, . . . , n, such that

‖ci‖L∞(Ω) < ∞, i = 1, . . . , n, (2.17a)

‖∇ρ‖L∞(Ω;Rd) < ∞, (2.17b)

‖div τ − ∇p‖20 < ∞, (2.17c)

‖ − ci∇μi + ωi∇p‖20 < ∞, i = 1, . . . , n, (2.17d)

and satisfying (2.12), (2.15) for all test tuples ({wi}n
i=1, s, q, {ui}n

i=1, u) ∈ Θ × Q, where Θ is defined
in (2.9).

7 A stronger condition, that ρ ∈ W1,∞(Ω) is bounded below with ∇ρ
ρ ∈ L∞(Ω;Rd), was used to analyze a compressible

Stokes flow in Caucao et al. (2016).

D
ow

nloaded from
 https://academ

ic.oup.com
/im

ajna/advance-article/doi/10.1093/im
anum

/drae001/7657984 by guest on 07 M
ay 2024



FINITE ELEMENT METHODS FOR MULTICOMPONENT CONVECTION-DIFFUSION 15

Observe that the solution tuple does not reside in any standard Sobolev space, but that the regularity
assumptions placed on the solution tuple and test spaces ensure that the surface terms in (2.12) are well-
defined. Recall that condition (2.17c) is the square-integrability of the Cauchy stress σ (as in Manouzi &
Farhloul, 2001). The nonlinear integrability condition (2.17d) is to our knowledge a novel requirement,
but also has a natural interpretation, namely the square-integrability of the diffusion driving forces:8

di ∈ L2(Ω;Rd). (2.18)

Moreover, we emphasize that this unorthodox formulation allows the rigorous incorporation of pressure
diffusion via the pressure gradient on the left side of (1.29a), despite the fact that the pressure field
is not a priori H1-regular in the Stokes subsystem. Later in Section 4.4 we observe convergence of the
diffusion driving forces in L2 and of the pressure inH1, but otherwise leave this consideration, and further
investigation into the optimal nonlinear formulation of the SOSM system, as intriguing open questions.

Remark 2.2 In the derivation of (2.10), we used the divergence of the mass-average velocity constraint
(1.29e), which ignores the curl component in the Helmholtz decomposition of the mass-average velocity
relationship (1.6). This choice ensures that the number of equations matches the number of unknown
variables. The full constraint is weakly incorporated, however, via the augmentations (1.22) and (1.25).
In the case of an ideal isobaric isothermal gas, a proof that the augmentations will enforce the full
constraint (1.6) was given in Van-Brunt et al. (2021). By means of the first law of thermodynamics
and the extensivity of the Gibbs free energy, we now show this is formally true in general, provided the
constitutive equations relating concentrations and chemical potentials are thermodynamically rigorous
in the sense that they arise from a Gibbs free energy functional.

Specifically, the first law and definition of the chemical potential imply that (see, for example, Moran
et al., 2018, eq. (11.112))

∇p +
∑

i

μi∇ci = ∇G̃ (2.19)

for the volumetric Gibbs free energy functional G̃ (J/m3), assumed to lie in H1(Ω).
Choosing u = 0 and ui = û ∈ L2(Ω;Rd) for each i in (2.15), we derive, by the nullspace (1.15),

∫
Ω

∑
i

(−ci∇μi + ωi∇p
) · û + γ

⎛
⎝v −

∑
j

ωjvj

⎞
⎠ · û dx = 0. (2.20)

Choosing û = ∇q for q ∈ H1(Ω), andwi = 0 for each i and s = 0 in (2.12), and noting that
〈
gi,

Mi
ρ

q
〉
Γ

=〈
Migiq,

1
ρ

〉
Γ
for each i, the final term may be written as

∫
Ω

⎛
⎝v −

∑
j

ωjvj

⎞
⎠ · ∇q dx =

〈
qgv · n,

1

ρ

〉
Γ

−
〈∑

i

Migiq,
1

ρ

〉
Γ

= 0 (2.21)

8 We conjecture that one could alternatively derive a formulation of the SOSM system dual to ours, which takes di ∈ L2(Ω;Rd)

as a primary unknown. We also conjecture that the integrability assumptions in Definition 2.1 could potentially be relaxed, for
example via Sobolev embeddings.
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16 F. R. A. AZNARAN ET AL.

by the compatibility condition (2.7). Thus,

∫
Ω

∑
i

(−ci∇μi + ωi∇p
) · ∇q dx = 0 (2.22)

for each q ∈ H1(Ω). Further rearrangement of the integrand yields

∑
i

−ci∇μi + ωi∇p = ∇p +
∑

i

−∇ (
ciμi

) +
∑

i

μi∇ci = −
∑

i

∇ (
ciμi

) + ∇G̃. (2.23)

Then choosing ∇q = −∑
i ∇(ciμi) + ∇G̃, we derive the Gibbs–Duhem equation

∫
Ω

∣∣∣∣∣∑
i

−ci∇μi + ωi∇p

∣∣∣∣∣
2

dx = 0. (2.24)

Then (2.20) reduces to

v =
∑

i

ωivi, (2.25)

showing the enforcement of the mass-average velocity constraint. Although this shows the preservation
of the Gibbs–Duhem and mass-average velocity constraints in the nonlinear infinite dimensional case, it
is significantly harder in the discretized nonideal system to enforce these exactly. This is a price we pay
for solving for the chemical potential.

3. Linearization and well-posedness

3.1 Variational formulation of a generalized Picard scheme

In this section we derive a variational formulation of a generalized Picard linearization. Given a previous
estimate for the potentials μ̃k and pressure pk for k ≥ 0, we regard these as fixed quantities which
determine the concentrations c̃k via chemical potential constitutive laws and an appropriate equation of
state such as (1.26). This in turn determines the density ρk, mass fractions ω̃k, total concentration ck

T and
transport matrix Mk defined via (1.3), (1.7), (1.12) and (1.11), respectively. We then construct a linear
system to solve for the next iterate ((μ̃k+1, τ k+1, pk+1), (ṽk+1, vk+1)). This update strategy is expected to
be effective because the gradients of chemical potential, pressure and mass-average velocity primarily
drive the dynamics of multicomponent flow; the role of the species concentrations is mostly confined
to the effect of altering the drag coefficients in the transport matrix. We make the following physically
reasonable assumptions about each iterate, in analogy to Definition 2.1.

Assumption 3.1 (Uniform positivity of concentrations.) For each k ≥ 0, we assume ck
i ∈ L∞(Ω), ρk ∈

W1,∞(Ω), and that ck
i ≥ κ > 0 a.e. for each i.

This again implies ρk ≥ κ
∑

i Mi > 0 a.e. We also assume henceforth that γ > 0.
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FINITE ELEMENT METHODS FOR MULTICOMPONENT CONVECTION-DIFFUSION 17

Given c̃k and the corresponding ω̃k, we define the iteration-dependent weighted function space

Θk :=
{
(w̃, s, q) ∈ L20(Ω)n × L2(Ω;S) × L20(Ω)

∣∣∣∣ div s − ∇q ∈ L2(Ω;Rd),
−ck

i ∇wi + ωk
i ∇q ∈ L2(Ω;Rd) ∀i

}
, (3.1)

whose defining conditions linearize those in (2.9). This mixed space is Hilbert with graph norm

‖(w̃, s, q)‖2
�k :=

∑
i

‖wi‖20 + ‖s‖20 + ‖q‖20 + ‖div s − ∇q‖20 +
∑

i

∥∥∥−ck
i ∇wi + ωk

i ∇q
∥∥∥2
0
. (3.2)

We now formulate our linearized problem as a symmetric perturbed saddle point problem. Define Ak :
Q → Q∗,Λ : Θk → (Θk)∗,Bk : Θk → Q∗ by

Ak(ṽ, v; ũ, u) :=
∫

Ω

∑
i,j

vi · Mk
ijuj dx + γ

∫
Ω

⎛
⎝∑

j

ωk
j (vj − v)

⎞
⎠ ·

(∑
i

ωk
i (ui − u)

)
dx, (3.3a)

Λ(μ̃, τ , p; w̃, s, q) :=
∫

Ω

A τ : s dx, (3.3b)

Bk(μ̃, τ , p; ũ, u) :=
∫

Ω

∑
i

(
−ck

i ∇μi + ωk
i ∇p

)
· ui + (div τ − ∇p) · u dx, (3.3c)

and the functionals

�1k(w̃, s, q) :=
〈
(s − qI)n,

gv
ρk

〉
�

+
∑

i

〈
gi,−wi + Mi

ρk
q

〉
�

+
∫

�

r̃ · w̃ dx,

�2k(ũ, u) := −
∫

�

ρkf · u dx. (3.4)

Note that under Assumption 3.1, each of the bilinear functionals is continuous; we will denote
their norms as ‖Ak‖, ‖Λ‖ and ‖Bk‖, respectively. Our linearized problem is posed as follows: find
((μ̃k+1, τ k+1, pk+1), (ṽk+1, vk+1)) ∈ Θk × Q such that

�(μ̃k+1, τ k+1, pk+1; w̃, s, q) + Bk(w̃, s, q; ṽ
k+1, vk+1) = �1k(w̃, s, q) ∀ (w̃, s, q) ∈ �k,

Bk(μ̃
k+1, τ k+1, pk+1; ũ, u) − Ak(ṽ

k+1, vk+1; ũ, u) = �2k(ũ, u) ∀ (ũ, u) ∈ Q,
(3.5)

i.e., defining the transpose B	
k : Q → (Θk)∗ in the canonical way,

(3.6)

We note that the variational terms involving chemical potential and pressure gradients are precisely of
the same variational form as the species continuity equations and the divergence of the mass-average
velocity constraint, which can be seen by inspecting (2.12) and (2.15). This key insight is what leads to
a symmetric system.
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18 F. R. A. AZNARAN ET AL.

Our nonlinear iteration scheme is as follows: for an initial estimate of the concentrations c̃0, we
solve the system (3.5) for the updated variables ((μ̃k+1, τ k+1, pk+1), (ṽk+1, vk+1)) ∈ Θk × Q, for k =
0, 1, 2, . . .. By the relations detailed in Section 1.4, these variables are used to calculate the updated
concentrations c̃k+1. This is iterated until for some set tolerance ε > 0,

(
‖(μ̃k+1, τ k+1, pk+1) − (μ̃k, τ k, pk)‖2

Θk + ‖(ṽk+1, vk+1) − (ṽk, vk)‖2Q
)1/2 ≤ ε. (3.7)

3.2 Well-posedness of the linearized system

We will now prove that the saddle point system (3.5) is well-posed under Assumption 3.1. This will
require a Poincaré-type inequality for the following seminorm on Θk:

|(w̃, s, q)|2
Θk := ‖s‖20 + ‖div s − ∇q‖20 +

∑
i

∥∥∥−ck
i ∇wi + ωk

i ∇q
∥∥∥2
0
. (3.8)

Lemma 3.2 (Poincaré inequality for the driving force.) LetΩ be a Lipschitz domain. Under Assumption
3.1, there exists K > 0 such that for each (μ̃, τ , p) ∈ Θk,

‖(μ̃, τ , p)‖Θk ≤ K|(μ̃, τ , p)|Θk . (3.9)

Proof of Lemma 3.2. The first stage of the proof is to show that

‖p‖0 � ‖τ‖0 + ‖div τ − ∇p‖0, (3.10)

following and mildly generalizing Manouzi & Farhloul (2001, Lemma 4). Set θ = τ − pI − rI where
r = 1

d|Ω|
∫
Ω

tr τ dx. Then

‖τ − pI‖0 ≤ ‖θ‖0 + ‖rI‖0. (3.11)

As
∫
Ω

tr θ dx = 0, we can use Boffi et al. (2013, Proposition 9.1.1) to derive

‖τ − pI‖0 � ‖dev θ‖0 + ‖div θ‖0 + ‖rI‖0
� ‖τ‖0 + ‖div τ − ∇p‖0, (3.12)

where the deviator is defined as dev θ := θ − tr θ
d I = dev τ . Now using

√
d‖p‖0 ≤ ‖τ − pI‖0 + ‖τ‖0, (3.13)

the result (3.10) follows. For the second stage of the proof, we will show that

‖μi‖0 � ‖p‖0 +
∥∥∥−ck

i ∇μi + ωk
i ∇p

∥∥∥
0
. (3.14)

This combined with (3.10) gives (3.9). To prove this second inequality, for each i we take the unique
zi ∈ H1

0(Ω;Rd)/ ker(div) such that div zi = μi. Then ui := zi/ck
i ∈ L2(Ω;Rd) with div(ck

i ui) = μi.
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FINITE ELEMENT METHODS FOR MULTICOMPONENT CONVECTION-DIFFUSION 19

With integration by parts we deduce

∫
Ω

(
−ck

i ∇μi + ωk
i ∇p

)
· ui dx =

∫
Ω

|μi|2 − Mip

(
μi

ρk
− ∇ρk

(ρk)2
· ck

i ui

)
dx. (3.15)

Upon rearrangement, we can derive the inequality

‖μi‖20 ≤ Mi‖p‖0
(

‖μi‖0
κ
∑

j Mj
+ ‖ui‖0‖ck

i ‖0
∥∥∥∥ ∇ρk

(ρk)2

∥∥∥∥
L∞(�;Rd)

)
+
∥∥∥−ck

i ∇μi + ωi∇p
∥∥∥
0
‖ui‖0

≤ κ−1‖p‖0
(

‖μi‖0 + ‖ui‖0
∥∥∥ck

i

∥∥∥
L∞(�)

‖∇ ln ρk‖L∞(�;Rd)

)
+
∥∥∥−ck

i ∇μi + ωi∇p
∥∥∥
0
‖ui‖0.

(3.16)

By the bounded inverse theorem, div admits a bounded left inverse, so ‖zi‖1 � ‖μi‖0 and thus

‖ui‖0 ≤ κ−1‖zi‖0 � κ−1‖μi‖0. (3.17)

Combining this with (3.16), we can divide through by ‖μi‖0 to derive

‖μi‖0 � κ−1‖p‖0
(
1+ κ−1

∥∥∥ck
i

∥∥∥
L∞(Ω)

‖∇ ln ρk‖L∞(Ω)

)
+ κ−1

∥∥∥−ck
i ∇μi + ωk

i ∇p
∥∥∥
0
. (3.18)

�
Note that in particular, the two steps of this proof imply that

div τ − ∇p = 0
−ck

i ∇μi + ωk
i ∇p = 0

}
�⇒

{ ‖p‖0 � ‖τ‖0,‖μi‖0 � ‖p‖0. (3.19)

Physically, this implies that in the absence of (at least this linearization of) the driving force, one
can recover the chemical potentials from the pressure. In this sense it is a generalization to the OSM
framework of (Manouzi & Farhloul, 2001, Lemma 4), which is exactly the first line of (3.19): that in the
absence of external forces, one can recover the pressure from the viscous stress. Since also the constant
in (3.18) depends unfavourably on κ (the uniform lower bound on concentrations), we see also that such
‘recovery’ of the potentials becomes more unstable near the singular regime in which concentrations
approach zero. Provided κ and the relative variation of the density are well-behaved across iterations, so
too will be the resulting constant.

A further intermediate lemma we need to prove well-posedness is the following.

Lemma 3.3 (Coercivity of a perturbation to Ak). Under Assumption 3.1 there exists λ
γ
κ > 0 depending

on κ and γ such that for all (ṽ, v) ∈ Q,

(
n

2
+ 1

4

)
λγ

κ ‖v‖20 + Ak(ṽ, v; ṽ, v) ≥ λ
γ
κ

4
‖(ṽ, v)‖2Q. (3.20)
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20 F. R. A. AZNARAN ET AL.

Proof. Let us define δi = vi − v for each i. Then we can explicitly compute

Ak(ṽ, v; ṽ, v) =
∫

Ω

∑
i,j

δi · Mk,γ
ij δj dx, (3.21)

where Mk,γ is defined using c̃k via (1.23). It follows from Van-Brunt et al. (2021, Lemma 4.1) that this
is a coercive bilinear form in δ̃: for some λ

γ
κ ,

Ak(ṽ, v; ṽ, v) ≥ λ
γ
κ

2

∑
i

‖δi‖20 = λ
γ
κ

2

∑
i

‖vi − v‖20; (3.22)

hence,

(
n

2
+ 1

4

)
λγ

κ ‖v‖20 + Ak(ṽ, v; ṽ, v) ≥ λ
γ
κ

2

∑
i

(
‖vi − v‖20 + ‖v‖20

)
+ λ

γ
κ

4
‖v‖20

≥ λ
γ
κ

4

∑
i

‖vi‖20 + λ
γ
κ

4
‖v‖20 = λ

γ
κ

4
‖(ṽ, v)‖2Q. (3.23)

�
Despite the complexity of the original fully coupled physics problem, our constructed formulation

allows us to invoke standard theory for well-posedness of Babuška (1971).

Theorem 3.4 (Well-posedness of the Picard linearization). Under Assumption 3.1, there exists a unique
solution to the perturbed saddle point system (3.5).

Proof. For a given (p, q) := ((μ̃, τ , p), (ṽ, v)) ∈ Θk × Q and (s, u) := ((w̃, s, q), (ũ, u)) ∈ Θk × Q we
will define the bounded bilinear form G : (Θk × Q) × (Θk × Q) → R as

G (p, q; s, u) := Λ(p; s) + Bk(s; q) + Bk(p; u) − Ak(q; u). (3.24)

We will prove Babuška’s inf-sup condition, namely that there exists a constant c > 0 such that for each
(p, q) ∈ Θk × Q there is (s, u) ∈ Θk × Q such that

G (p, q; s, u)

‖(s, u)‖Θk×Q
≥ c‖(p, q)‖Θk×Q, (3.25)

with product norm ‖(p, q)‖2
Θk×Q

:= ‖p‖2
Θk + ‖q‖2Q. Note that G is defined on the product of a space

with itself and is symmetric, and so only the one inf-sup condition (3.25) needs to be verified. Proving
(3.25) will be accomplished by showing that for a constant c > 0, for each (p, q) ∈ Θk × Q there is
(s, u) ∈ Θk × Q such that G (p, q; s, u) ≥ c‖(p, q)‖2

Θk×Q
, and for a C > 0 independent of (p, q),

C‖(p, q)‖Θk×Q ≥ ‖(s, u)‖Θk×Q. (3.26)
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FINITE ELEMENT METHODS FOR MULTICOMPONENT CONVECTION-DIFFUSION 21

This, combined with our Poincaré-type inequality, will imply well-posedness. We do this by fixing (s, u)
as the ansatz

wi = C1μi, s = C1τ + C2sv, q = C1p,

ui = C3

(
−ck

i ∇μi + ωk
i ∇p

)
− C1vi, u = −C1v + C4(div τ − ∇p). (3.27)

Here C1, . . . > 0 are constants to be set later and sv ∈ H(div;S) is chosen to satisfy div sv = v and
‖sv‖H(div;S) ≤ CΣ‖v‖0 for a constant CΣ independent of v (its existence is guaranteed by Arnold (2018,
Theorem 8.1)). It is clear that (3.26) holds. With these choices of test functions we may compute

G (p, q; s, u) =
∫

�

A τ : (C1τ + C2sv) dx + C3

∑
i

∥∥∥−ck
i ∇μi + ωk

i ∇p
∥∥∥2
0

+ C4‖div τ − ∇p‖20 + C2‖v‖20 − Ak (ṽ, v; ũ, u), (3.28)

and observe that the final term on the right may be written equivalently as

C1Ak (ṽ, v; ṽ, v) − Ak

(
ṽ, v;

{
C3

(
−ck

i ∇μi + ωk
i ∇p

)}
i
,C4(div τ − ∇p)

)
. (3.29)

With λ
γ
κ given by Lemma 3.3 we now choose C2 = ‖Ak‖2(2n + 1)λγ

κ and assume that C1 ≥ 4‖Ak‖2.
Then

C2‖v‖20 + C1Ak (ṽ, v; ṽ, v) ≥ ‖Ak‖2λγ
κ ‖(ṽ, v)‖2Q. (3.30)

Using uniform positive definiteness of the compliance tensor, the bound on sv and boundedness of the
operators Λ,Ak, we can proceed to bound (3.28) from below as

G (p, q; s, u) ≥ αC1‖τ‖20 + ‖Ak‖2λγ
κ ‖(ṽ, v)‖2Q + C3

∑
i

∥∥∥−ck
i ∇μi + ωk

i ∇p
∥∥∥2
0

+ C4‖div τ − ∇p‖20 − λγ
κ (n + 1)C�‖Ak‖2‖�‖‖v‖0‖τ‖0

− ‖Ak‖‖(ṽ, v)‖Q

(
C2
3

∑
i

∥∥∥−ck
i ∇μi + ωk

i ∇p
∥∥∥2
0
+ C2

4‖div τ − ∇p‖20
)1/2

. (3.31)

Here α > 0 is such that
∫
Ω

A τ : τ dx ≥ α‖τ‖20 for all τ ∈ L2(Ω;S). The desired inequality may
now be derived by judiciously selecting the constants C1,C3,C4 (typically by choosing C1 � C2 �
max(C3,C4)) and using the weighted Young inequality. For concreteness, constants we might pick are

C1 =
(

λ
γ
κ C2

�‖�‖2(n + 1)2

α
+ 2

)
‖Ak‖2, C3 = C4 = λγ

κ . (3.32)
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22 F. R. A. AZNARAN ET AL.

With this choice and our Poincaré-type inequality from Lemma 3.2, combined with the inequality (3.26)
we may derive

G (p, q; s, u) ≥ 2α‖Ak‖2‖τ‖20 + λ
γ
κ

6
‖Ak‖2‖(ṽ, v)‖2Q

+ λ
γ
κ

4

(∑
i

∥∥∥−ck
i ∇μi + ωk

i ∇p
∥∥∥2
0
+ ‖div τ − ∇p‖20

)

� |p|2
�k + ‖q‖2Q � ‖(p, q)‖2

�k×Q � ‖(p, q)‖�k×Q‖(s, u)‖�k×Q, (3.33)

which is the statement of the Babuška condition (3.25). �

Remark 3.5 The analysis presented here relies heavily on Assumption 3.1, that ci ≥ κ ≥ 0. This
assumption may be brought to the edge of validity (or κ may become very small) in many situations,
such as near the intakes of twomixing substances as is explored in the second numerical example, Section
4.5. In the case of ideal gas diffusion decoupled from convection, the influence of κ was explored
in Van-Brunt et al. (2021) where it was found that λκ = O(κ−1) and that numerical robustness was
maintained for very small values of κ .

4. Discretization and numerical experiments

We now assume that Ω is polytopal, and admits a quasi-uniform triangulation Th with simplicial ele-
ments of maximal diameter h. Denote conforming finite element spaces for the discrete solution tuple by(

Xn
h × �h × Ph

)︸ ︷︷ ︸
=: �k

h

× (
Wn

h × Vh

)︸ ︷︷ ︸
=: Qh

⊂
(

L20(�)n × L2(�;S) × L20(�)
)

︸ ︷︷ ︸
⊃ �k

× (L2(�;Rd)n × L2(�;Rd))︸ ︷︷ ︸
= Q

. (4.1)

Here Θk
h is independent of k as a set, but inherits an iteration-dependent norm described below; Qh

inherits the norm of Q. Our discretized linear problem after k ≥ 0 nonlinear iterations therefore reads:
seek ((μ̃h, τh, ph), (ṽh, vh)) ∈ Θk

h × Qh such that

�(μ̃h, τh, ph; w̃h, sh, qh) + Bk,h(w̃h, sh, qh; ṽh, vh) = �1k,h(w̃h, sh, qh)∀(w̃h, sh, qh) ∈ �k
h,

Bk,h(μ̃h, τh, ph; ũh, uh) − Ak,h(ṽh, vh; ũh, uh) = �2k,h(ũh, uh) ∀(ũh, uh) ∈ Qh.
(4.2)

The terms where Ak,h,Bk,h are obtained from Ak,Bk and �1k,h, �
2
k,h from �1k , �

2
k , respectively, by replacing

the discretely computed concentrations ck
i and inverse density (ρk)−1 with discrete approximations; we

use these to define a norm ‖ · ‖Θk
h
for Θk

h in analogy to (3.2).9 In block form, the linearized discrete
problem reads

(4.3)

9 Note that this norm is mesh-dependent only in the sense of depending on the previous discrete solution.
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FINITE ELEMENT METHODS FOR MULTICOMPONENT CONVECTION-DIFFUSION 23

4.1 Structure-preservation and well-posedness

We have already argued the need for pressure regularity greater than L2. We therefore employ the
continuous Lagrange element of degree t ≥ 1, Ph = CGt(Th), for the pressure. It appears natural to take
the chemical potential space Xh to be CG elements of at least the same degree r ≥ t, Xh = CGr(Th),
from the diffusion driving forces (1.14), and since the chemical potentials are used to calculate the
concentrations, which one would like to approximate to high order due to their physical importance.

The mass-average velocity constraint (1.6) suggests that the species velocity space be contained in
the space used for convective velocity, Wh ⊂ Vh. For the Stokes subsystem, it is desirable that the pair
(Σh × Ph,Vh) be inf-sup compatible, for which it is sufficient to have that the full ‘divergence of the
Cauchy stress’, σ = (τ , p) �→ div τ − ∇p, is surjective onto Vh. By the regularity choice (2.5) for the
pressure, it is thus natural to apply div-conforming tensor elements to discretize the viscous stress. The
conservation of angular momentum is equivalent to the symmetry of the Cauchy stress, which by the
decomposition (1.20) is equivalent to that of the viscous stress; for now, we consider exactly symmetric
elements for the viscous stress (such as those proposed in Arnold & Winther, 2002; and Arnold et al.,
2008) since this obviates the need for a symmetry-enforcing Lagrange multiplier which would add a
further field to our (2n + 3)-field formulation.

However, if one would like to repeat at the discrete level the proof of Theorem 3.4, it is necessary
for div : Σh → Vh to be surjective, allowing us to construct the discrete analogue of the tensor field sv
in the ansatz (3.27). This is stronger than surjectivity of (τ , p) �→ div τ − ∇p,Σh × Ph → Vh, but in
practice is equivalent because many appropriate choices ofΣh are designed to discretize the full Cauchy
stress. Furthermore, the discrete analogue of the constant CΣ (and hence the resulting inf-sup constant)
will a priori depend on h; it is therefore necessary to assume that such sv can be constructed stably.

Assumption 4.1 (Stable right inverse for the divergence.) There exists CΣ independent of h such that
for each uh ∈ Vh and for the unique sh ∈ Σh/ ker(div) with div sh = uh, there holds ‖sh‖H(div;S) ≤
CΣ‖uh‖0.
This is true for (for example) stress elements discretizing an elasticity complex which admits bounded
commuting projections to the subcomplex, as is for example the case for the Arnold–Winther and
Arnold–Awanou–Winther elements (products of the finite element exterior calculus (Arnold, 2018, Sec.
8.8)), as proved in Arnold & Winther (2002) and Arnold et al. (2008) by explicit construction of such
projections. The other relations are summarized below as,10

(4.4)

where � indicates surjectivity. The bottom row corresponds to the final segment of a discrete stress
elasticity complex, with stress space refined for Stokes flow due to the decomposition (1.20). We will
need the conditions of Lemma 3.2 to hold exactly in the discretization. This will in general require that we

10 Here πi denotes projection onto the ith component, i.e. we require Ph ⊂ Xh.
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24 F. R. A. AZNARAN ET AL.

approximate the concentrations, ck
i , and density reciprocal, (ρk)−1, in specific discrete function spaces.

The interpolation of these terms will be denoted by ck
i,h and ρ

k,−1
h , respectively.

Finally, to show well-posedness of the discrete problem, we require an additional condition which
does not fit neatly onto (4.4).

Assumption 4.2 (Discrete driving force.) The operator given by

di,k
h (wh, qh) := −ck

i,h∇wh + ωk
i,h∇qh, (4.5)

where ωk
i,h := Mic

k
i,hρ

k,−1
h , is well-defined as a map di,k

h : Xh × Ph → Wh, i.e., it takes values in Wh.

Remark 4.3 Note that Lemma 3.2 required the gradient of ρ−1, and so ρ
k,−1
h should at least be a

continuous piecewise linear function. In order to minimize the polynomial degree for Wh arising from
Assumption 4.2, it is advantageous to interpolate ck

i,h onto the space DG0. These coefficients do not
affect the accuracy of the discretization, only the quality of the linearization, and nonlinear convergence
appears robust regardless of this approximation.

Theorem 4.4 (Discrete inheritance of well-posedness.)Under Assumptions 4.1 and 4.2 and the relations
specified in (4.4), the system (4.2) is well-posed, uniformly in h.

Proof. Due to the structural conditions demanded in the Assumptions, by inspection the choices of test
functions (3.27) are valid. As a consequence we may completely replicate the argument presented in
the infinite-dimensional case, and derive the analogue of condition (3.25) with constant independent of h.

�

4.2 Error estimates

Following Xu & Zikatanov (2003, Theorem 2), for fixed k we infer the abstract error estimate

∥∥∥(μ̃k+1, τ k+1, pk+1) − (μ̃h, τh, ph)

∥∥∥
Θk

h

+
∥∥∥(ṽk+1, vk+1) − (ṽh, vh)

∥∥∥
Q
� EΘk

h
+ EQh

, (4.6)

where

E�k
h
:= inf

(w̃h,sh,qh)∈�k
h

∥∥∥(μ̃k+1, τ k+1, pk+1) − (w̃h, sh, qh)

∥∥∥
�k

h

,

EQh
:= inf

(ũh,uh)∈Qh

∥∥∥(ṽk+1, vk+1) − (ũh, uh)

∥∥∥
Q
.

(4.7)

Here the tuple ((μ̃k+1, τ k+1, pk+1), (ṽk+1, vk+1)) is defined as the exact solution to (3.5), but with

Bk,Ak, �
1
k , �

2
k replaced with Bk,h,Ak,h, �

1
k,h, �

2
k,h, respectively—that is, the solution of the system (3.5)

with the estimates of the concentrations and inverse density replaced by ck
i,h and ρ

k,−1
h , respectively.

To derive a practical error estimate, wewill need to bound the quantitiesEΘk
h
andEQh

by interpolation
estimates specific to the choice of finite element spaces, by estimating ‖ · ‖Θk

h
, ‖ · ‖Q in terms of standard
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Sobolev norms. To this end we can readily check that

E�k
h
� max

(
1,
∑

i

∥∥∥ck
i,h

∥∥∥
L∞(�)

)
inf

w̃h∈Xn
h

∥∥∥μ̃k+1 − w̃h

∥∥∥
1

+ max

(
1,
∑

i

∥∥∥ωk
i,h

∥∥∥
L∞(�)

)
inf

qh∈Ph

∥∥∥pk+1 − qh

∥∥∥
1
+ inf

sh∈�h

∥∥∥τ k+1 − sh

∥∥∥
H(div;S)

,

EQh
� inf

ũh∈Wn
h

∥∥∥ṽk+1 − ũh

∥∥∥
0
+ inf

uh∈Vh

∥∥∥vk+1 − uh

∥∥∥
0
.

(4.8)

4.3 Examples of suitable finite elements

Having derived abstract error estimates, we now consider two simple combinations of finite elements
satisfying the structural conditions (4.4) and Assumptions 4.1 and 4.2.

The design and implementation of stress elements which exactly enforce symmetry and div-
conformity is notoriously difficult; in 2D, one choice of such elements is the conforming Arnold–
Winther element (Arnold & Winther, 2002), recently incorporated into the Firedrake finite element
library (Rathgeber et al., 2016; Aznaran et al., 2022a). In the lowest-order case we denote this element
by AWc

3. Specifying

Xh = Ph = CG1(Th) ∩ L20(Ω), (4.9a)

Σh = AWc
3(Th;S), (4.9b)

Wh = Vh = DG1(Th;R
d), (4.9c)

and further assuming that the discretely computed ck
i and (ρk)−1 have been interpolated into DG0 and

CG1, respectively, then this discretization satisfies the structural properties (4.4) and Assumptions 4.1
and 4.2, hence we deduce the error estimate (4.6).

Let Π
CG1
h : H2(Ω) → CG1(Th),Π

AWc
3

h : H1(Ω;S) → AWc
3(Th;S), and Π

DGd
1

h : H1(Ω;Rd) →
DG1(Th;R

d) be the associated interpolation operators. We then have the following estimates under
sufficient regularity assumptions (for details we refer to Arnold & Winther, 2002; Logg et al., 2012,
Ch. 3; and Boffi et al., 2013, p. 72):∥∥∥μ̃ − Π

CG1
h μ̃

∥∥∥
1
� h|μ̃|2, (4.10a)

∥∥∥p − Π
CG1
h p

∥∥∥
1
� h|p|2, (4.10b)

∥∥∥τ − Π
AWc

3
h τ

∥∥∥
0
+ h

∥∥∥div
(
τ − Π

AWc
3

h τ
)∥∥∥

0
� h2|τ |2, (4.10c)

∥∥∥∥(ṽ, v) − Π
DGd

1
h (ṽ, v)

∥∥∥∥
Q
� h2|(ṽ, v)|1, (4.10d)
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where Π
CG1
h ,Π

DGd
1

h have been applied component-wise. Using these estimates for the interpolation
operators and the error estimate (4.6), we can derive the error bound∥∥∥(μ̃k+1, τ k+1, pk+1) − (μ̃h, τh, ph)

∥∥∥
Θk

h

+
∥∥∥(ṽk+1, vk+1) − (ṽh, vh)

∥∥∥
Q
� h. (4.11)

We will see in practice that the order of convergence for several fields is actually higher, but the error of
the species velocities and the driving forces remains O(h).

A second class of finite elements may be found by replacing (4.9a) with

Xh = CG2(Th) ∩ L20(Ω),Ph = CG1(Th) ∩ L20(Ω), (4.12)

and leaving the others unchanged. Again, the structural conditions are satisfied if ck
i and (ρk)−1 are

interpolated into DG0 and CG1, respectively. A similar error analysis again confers an error bound of
O(h), though shortly we will see that this order is actually higher in practice.

Remark 4.5 These estimates bound the error between the discrete solutions at iteration k +
1, ((μ̃h, τh, ph), (ṽh, vh)) and the continuous solution of the nonlinear scheme ((μ̃k+1, τ k+1, pk+1), (ṽk+1,

vk+1)) with the same (discrete) coefficients. In principle this is incomplete, as ideally we would derive
error estimates against the continuous solution ((μ̃k+1, τ k+1, pk+1), (ṽk+1, vk+1)) at iteration k + 1 with
the exact (continuous) coefficients. Estimates on such consistency errors were analysed for a simpler
system in Van-Brunt et al. (2021) and some rationale was provided as to why in practice this is not an
issue, based on the formal order of the consistency error being strictly less than the discretization error.
We expect a similar (if laborious) analysis could be performed, following the strategy in Van-Brunt
et al. (2021). In general, the consistency errors are expected to be O(h2), which will be borne out in the
numerical examples.

Remark 4.6 We emphasize that we have aimed to identify appropriate structural conditions between
finite element spaces in order to preserve desirable properties of the SOSM system—in particular,
conditions which allow mimicry of well-posedness proofs from the infinite-dimensional problem—
rather than to advocate specifically for the elements used here. We expect it is possible to use Lagrange
multipliers to weakly enforce the symmetry of the viscous stress, which would allow for the choice of
higher polynomial degrees.

The system matrix of our discrete linearized system (4.3) has symmetric perturbed saddle point
structure, and although indefinite, is such that both the blocksΛ,Ak,h are symmetric positive semidefinite.
These matrix properties hold independently of the particular material considered. We expect that this
structure should be conducive to the development of fast preconditioners.

4.4 Validation with manufactured solutions

We now verify our scheme, implemented in Firedrake (Rathgeber et al., 2016). Firedrake currently only
supports symmetry-enforcing stress elements in 2D, and we thus restrict ourselves to the case d = 2.
Throughout these experiments we chose the penalty parameter γ = 0.1 and constant functions for
the initial guesses, and the linear systems were solved using the sparse LU factorization of MUMPS
(Amestoy et al., 2001) via PETSc (Balay et al., 2019).

To validate our error estimates, we construct a manufactured solution for an ideal gas on the unit
square Ω = (0, 1)2. If RT = 1, the diffusion coefficients are given by Dij = DiDj for Dj > 0, and
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Fig. 1. Error plots for two finite element families: (4.9) (left) and (4.12) (right).

g : R2 → R is smooth, then one can check that an analytical solution to the OSM subsystem (1.10) is
given by

ci = exp
(

g

Di

)
, vi = Di∇g, (4.13)

which together implicitly define every other quantity (for given shear and bulk viscosities) apart from
the chemical potentials. We compute the latter by inverting the ideal gas relation (1.26) with p� =
−
∫
Ω

p dx,μ�
i = −

∫
Ω

ci dx ∀i.11 The molar mass of each species was set to 1, and ζ , η to 0.1. The initial
guesses for the concentrations c̃0 were set as c0i = −

∫
Ω

ci dx, i.e. as the average of the exact concentrations.
We used Di = 1

2 + i
4 , i = 1, 2, 3, and g(x, y) = xy

5 (1−x)(1−y) to generate Figure 1, the log-log error
plot for the overall algorithm, which demonstrates the negligible effect of the consistency error induced
by the discrete interpolations ck

i,h, ρ
k,−1
h , and verifies the error estimate (4.11) (for the 0th-order terms).

The tolerance in the outer solver was 10−7 in the �2 norm, and took 6 nonlinear iterations on the
coarsest mesh of 4× 4, to 7 iterations on finest mesh of 32× 32. We have denoted in Figure 1 di,h as the
discrete driving force defined by (4.5) at the final iteration, and σh := τh − phI. Note that we observe
O(h2) convergence in the L2 norms of the chemical potential, stress and pressure. As in Van-Brunt et al.
(2021), this suggests that the error estimates could be improved, for example by duality arguments.

We now turn to the higher-order terms in (4.11). Due to our construction of the function spaces (3.1)
for the linearized problem, it is the norm ‖·‖Θk

h
with respect to which we have proved convergence of the

solution tuple. It is natural to wonder whether this is an artefact of our constructed function spaces. To
answer this, we measure convergence of the chemical potential gradients ∇μi, pressure gradient ∇p and
divergence div τ of the nonequilibrium stress to their true values, compared to the convergence of the
nonlinear diffusion driving forces and the divergence of the full Cauchy stress. For the former quantities,
there is a priori no reason to expect any convergence.

11 Physically, a normalization factor should be placed in front of the integral to ensure consistency of units. However, since this
example is purely to verify the proposed scheme, units are not emphasized in this section.
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Fig. 2. Higher-order convergence in L2 of the divergence of the full Cauchy stress, and driving forces, for the finite element family
(4.12).

Remarkably, we observe in Figure 2 that (at least for the higher-order family) not only do the
components ∇μi,∇p, div τ converge, but in fact there is convergence of the nonlinear diffusion driving
forces di and of the divergence of the full Cauchy stress div σ , and at a rate one order higher than these
individual components ∇μi,∇p, div τ ; this suggests that, rather than being a mathematical artefact of
our formulation, the conditions defining the Θk space capture the underlying thermodynamic quantities
of interest. This also provides intriguing (if circumstantial) evidence towards the physical relevance of
our nonlinear formulation in Definition 2.1.

4.5 Benzene-cyclohexane mixture

Cyclohexane (CH) is important in the petrochemical industry as it is used to synthesize a variety of
products, such as nylon. It is primarily produced through the hydrogenation of benzene (CH), resulting
in a benzene-cyclohexane mixture. Separation of cyclohexane from this mixture is difficult due to their
similar vaporization temperatures (Villaluenga & Tabe-Mohammadi, 2000). Since liquid mixtures of
these components are important in the chemical industry, most of the required thermodynamic and
dynamical property data are readily available in the literature. Because it provides a tractable nonideal
example for which a complete set of material properties is known, we consider here a microfluidic
chamber in which Stokes flows of liquid benzene and cyclohexane mix.

The required transport parameters (measured at 298.15 K) may be found in Guevara-Carrion et al.
(2016). We observe from these data that the Stefan–Maxwell diffusivity and the shear viscosity are
both approximately constant with respect to composition and pressure, and will be approximated
as D12 = 2.1 × 10−9 m2/s and 6 × 10−4 Pa · s, respectively. Lacking accurate data for the bulk
viscosities of either benzene or cyclohexane, we set them to be effectively zero, choosing ζ = 10−7 Pa·s.
(Numerical experiments confirmed that a value of this order has no discernible impact on the output of the
simulation.) The molar masses used in the simulation are 0.078 kg/mol for benzene and 0.084 kg/mol
for cyclohexane. The ambient pressure was taken as p� = 105 Pa.

Although benzene and cyclohexane are fully miscible liquids, they form a nonideal solution. Infor-
mation relating the chemical potentials to the mole fractions is therefore required. This is accomplished
using a Margules model (Green & Perry, 2007) for activity coefficients, the parameters of which were
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Fig. 3. Mesh used in the benzene-cyclohexane mixing simulation. Each unit along the axes corresponds to a physical distance of
2mm.

reported by Tasić et al. (1978) as AC6H6,C6H12
= 0.4498 and AC6H12,C6H6

= 0.4952. This well-
known model parameterizes activity coefficients in terms of a minimal set of functions which maintain
thermodynamic rigour.

To aid convergence, we use an under-relaxation scheme with respect to the concentrations in our
nonlinear solver, with a relaxation parameter of 0.1. That is, we update the concentration as c∗,k+1

i where

c∗,k+1
i := 0.9ck

i + 0.1ck+1
i . (4.14)

This is necessary due to stiffness of the problem, which owes to the fact that the mixtures are essentially
fully separated at the inlets to the apparatus.

To calculate the total concentration of the mixture we use

cT = crefC6H6
crefC6H12

xC6H6
crefC6H12

+ xC6H12
crefC6H6

, (4.15)

where cref− denotes the concentration (inverse molar volume) of the pure species at 105 Pa and 298.15 K,
approximately 9.20 mol L−1 and 11.23 mol L−1 for cyclohexane and benzene, respectively. (4.15) is
derived from (1.28) under the assumption that the partial molar volumes of the two components are
independent of the solution’s composition.

We consider a two-dimensional channel configuration where two inlets converge into a single outlet
in a truncated ‘Y’ configuration. A diagram of the mesh is shown in Figure 3.

At the top inlet, pure benzene enters and at the bottom pure cyclohexane, at speeds vrefC6H6
and vrefC6H12

,
respectively. Rather than symmetrize these speeds, superior mixing results are obtained by symmetrizing
the molar fluxes at the inlets. In other words, we impose the condition

crefC6H6
vrefC6H6

= crefC6H12
vrefC6H12

. (4.16)
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Fig. 4. Plot of change in pressure in the mixing chamber, with streamlines computed from the mass-average velocity.

We will specify that vC6H6
enters at a speed of 4μm s−1. This prescribes an inlet speed for cyclohexane

of approximately 3.28μm s−1. A parabolic profile across each inlet and outlet is imposed, as this is
consistent with the no-slip condition and the characteristics of a plane Poiseuille flow. Concretely, this
means the boundary conditions at the inlets are the normal component of

civi = −2x(x − 1)crefi

[
2

±1

]
, (4.17)

where i = C6H6 or C6H12 and the sign in the 2nd entry is negative for benzene and positive for
cyclohexane. For both species, the normal conditions at the outlet are

civi = −2(y − 0.5)(y + 0.5)crefi

[
1
0

]
. (4.18)

Results for the fields computed by the simulation are visualized in Figs 4 and 5. We may observe
that the pressure profile is smooth. We also note that, although the mass-average velocity exhibits rather
simple, predictable behaviour, the flow fields of the individual species are significantly more complex
and that these three flow profiles are cleanly distinguished. We see that both species develop convective
rolls—behaviour markedly different from the bulk velocity.

Remark 4.7 The concentrations of each substance become very small near the inlet of the other, with
benzene reaching a concentration of less than 10 mmol/L. Although convergence was achieved despite
the value of κ being consequently very small, further investigation is needed to ensure robust convergence
for vanishing κ at large Péclet numbers. This stands in contrast to the pure diffusion problem considered
in Van-Brunt et al. (2021).

4.6 Code availability

For reproducibility, the exact software versions used to generate the numerical results in this paper are
archived on Zenodo (Aznaran et al., 2022b); our implementation employs a nondimensionalization of the
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Fig. 5. Concentrations of benzene (left) and cyclohexane (right), with streamlines computed from their velocities.

SOSM system. All code containing further implementation details of the microfluidic example as well as
the mesh used and scripts for the associated plots, are available at https://bitbucket.org/FAznaran/sosm-
numerics/.

5. Conclusions and outlook

We have proposed a formulation and numerical method for the Stokes–Onsager–Stefan–Maxwell
equations of multicomponent flow, proving continuous and discrete inf-sup conditions for a linearization
of the system with saddle point structure. This structure arises from the duality between the diffusion
driving forces, and the combination of species continuity equations with the divergence of the mass-
average velocity constraint. We obtained error estimates in a norm corresponding to a space requiring
square-integrable diffusion driving forces and total stress divergence, and verified these with numerical
experiments.

This work represents a first step towards the simulation of nonideal mixtures; further physical
extensions will be required for realistic applications in chemical engineering. Of particular interest are the
analysis of the transient problem, the incorporation of thermal effects based on the framework proposed
in Van-Brunt et al. (2022), the weak enforcement of symmetry for the viscous stress tensor to ease the
extension of the method to three dimensions (Boffi et al., 2013, Section 9.2), the consideration of the
case of vanishing bulk viscosity as encountered in dilute monatomic gases (Hirschfelder et al., 1954),
and the extension to NSOSM transport (i.e. non-negligible Reynolds number).

Rigorous investigation into a notion of weak solution more refined than Definition 2.1 incorporating
(for example) integrability of thermodynamic pressure gradients, and appropriate Picard or Newton
linearization, would also be of significant interest. We also remark that a proof of convergence of the
Picard iteration could be used to prove the existence of a solution tuple for the infinite-dimensional
nonlinear SOSM system.
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