5 research outputs found

    Fresh Water Lens Persistence and Root Zone Salinization Hazard Under Temperate Climate

    No full text
    In low lying deltaic areas in temperate climates, groundwater can be brackish to saline at shallow depth, even with a yearly rainfall excess. For primary production in horticulture, agriculture, and terrestrial nature areas, the fresh water availability may be restricted to so-called fresh water lenses: relatively thin pockets of fresh groundwater floating on top of saline groundwater. The persistence of such fresh water lenses, as well as the quantity and quality of surface water is expected to be under pressure due to climate change, as summer droughts may intensify in North-West Europe. Better understanding through modelling of these fresh water resources may help anticipate the impact of salinity on primary production. We use a simple model to determine in which circumstances fresh water lenses may disappear during summer droughts, as that could give rise to enhanced root zone salinity. With a more involved combination of expert judgement and numerical simulations, it is possible to give an appraisal of the hazard that fresh water lenses disappear for the Dutch coastal regions. For such situations, we derive an analytical tool for anticipating the resulting salinization of the root zone, which agrees well with numerical simulations. The provided tools give a basis to quantify which lenses are in hazard of disappearing periodically, as well as an impression in which coastal areas this hazard is largest. Accordingly, these results and the followed procedure may assist water management decisions and prioritization strategies leading to a secure/robust fresh water supply on a national to regional scale

    Soil sodicity originating from marginal groundwater

    No full text
    Soil salinity and sodicity are among the oldest soil and groundwater pollution problems and are widespread across the globe. Where salinity affects crop water uptake and yield, sodicity may additionally cause poorly reversible soil structure degradation and a severely reduced hydraulic conductivity. We use the model HYDRUS‐1D to simulate sodicity development in soils with shallow, Na‐rich groundwater under a normal weather regime with distinct dry seasons. Attention is given to the impact of a sudden fresh water input on the formation of a sodic layer. The complex interplay between soil chemistry, soil physics, soil mechanics (as far as swell–shrink behavior is concerned), and fluctuating atmospheric conditions results in a remarkably regular relation between depth, location, and severity of a sodic layer that forms within the soil as a function of rainfall intensity. A threshold behavior is observed: sodic layer formation is absent at rainfall intensities below this threshold, whereas sodic layer thickness and hydraulic conductivity reduction increase rapidly with intensities exceeding this threshold. This is the case even for different soil types and groundwater depths. Field observations agree with our simulations: the properties of the layer with sodicity‐induced structure degradation are more strongly developed, as this layer is situated at a shallower depth. The implementation of hydraulic conductivity reduction as a function of exchangeable Na percentage and ionic strength in HYDRUS‐1D can be improved towards a smooth reduction function, changing soil physical parameters due to swelling and dispersion of clay and reconsideration of the reversibility of sodicity development.ISSN:1539-166
    corecore