93 research outputs found
Entanglement of a qubit with a single oscillator mode
We solve a model of a qubit strongly coupled to a massive environmental
oscillator mode where the qubit backaction is treated exactly. Using a
Ginzburg-Landau formalism, we derive an effective action for this well known
localization transition. An entangled state emerges as an instanton in the
collective qubit-environment degree of freedom and the resulting model is shown
to be formally equivalent to a Fluctuating Gap Model (FGM) of a disordered
Peierls chain. Below the transition, spectral weight is transferred to an
exponentially small energy scale leaving the qubit coherent but damped. Unlike
the spin-boson model, coherent and effectively localized behaviors may coexist.Comment: 4 pages, 1 figure; added calculation of entanglement entrop
Towards non-classical light storage via atomic-vapor Raman scattering
We present experimental work that investigates whether quantum information carried by light can be stored via reversible mapping of the quantum state of such light onto a collective atomic coherence. Such a quantum memory could be utilized to allow quantum communication over long, lossy channels. Current efforts concentrate on writing a photon-number-squeezed state of light onto a collective coherence between the ground-state hyperfine levels of 87Rb atoms in a warm vapor cell, and subsequent on-demand retrieval of this light. In this approach, intensity squeezing between the written and retrieved photon fields provides evidence for storage of a photon-number-squeezed state of light. The scheme is based on spontaneous Raman transitions that create the atomic coherence, and at the same time convert control fields into signal fields that propagate under conditions of electromagnetically induced transparency. We present experimental results demonstrating the storage and retrieval of light using this method, and discuss techniques for measuring intensity squeezing between these photon fields
An asymptotical von-Neumann measurement strategy for solid-state qubits
A measurement on a macroscopic quantum system does in general not lead to a
projection of the wavefunction in the basis of the detector as predicted by
von-Neumann's postulate. Hence, it is a question of fundametal interest, how
the preferred basis onto which the state is projected is selected out of the
macroscopic Hilbert space of the system. Detector-dominated von-Neumann
measurements are also desirable for both quantum computation and verification
of quantum mechanics on a macroscopic scale. The connection of these questions
to the predictions of the spin-boson modelis outlined. I propose a measurement
strategy, which uses the entanglement of the qubit with a weakly damped
harmonic oscillator. It is shown, that the degree of entanglement controls the
degree of renormalization of the qubit and identify, that this is equivalent to
the degree to which the measurement is detector-dominated. This measurement
very rapidly decoheres the initial state, but the thermalization is slow. The
implementation in Josephson quantum bits is described and it is shown that this
strategy also has practical advantages for the experimental implementation.Comment: 4 pages, 3 figures, accepted for publication as a rapid communication
in Phys. Rev.
Decoherence by a nonlinear environment: canonical vs. microcanonical case
We compare decoherence induced in a simple quantum system (qubit) for two
different initial states of the environment: canonical (fixed temperature) and
microcanonical (fixed energy), for the general case of a fully interacting
oscillator environment. We find that even a relatively compact oscillator bath
(with the effective number of degrees of freedom of order 10), initially in a
microcanonical state, will typically cause decoherence almost indistinguishable
from that by a macroscopic, thermal environment, except possibly at
singularities of the environment's specific heat (critical points). In the
latter case, the precise magnitude of the difference between the canonical and
microcanonical results depends on the critical behavior of the dissipative
coefficient, characterizing the interaction of the qubit with the environment.Comment: 18 pages, revtex, 2 figures; minor textual changes, corrected typo in
eq. (53) (v2); textual changes, mostly in the introduction (v3
Engineering the quantum measurement process for the persistent current qubit
The SQUID used to measure the flux state of a superconducting flux-based qubit interacts with the qubit and transmits its environmental noise to the qubit, thus causing the relaxation and dephasing of the qubit state. The SQUID–qubit system is analyzed and the effect of the transmittal of environmental noise is calculated. The method presented can also be applied to other quantum systems
Coherent dynamics of a Josephson charge qubit
We have fabricated a Josephson charge qubit by capacitively coupling a
single-Cooper-pair box (SCB) to an electrometer based upon a single-electron
transistor configured for radio-frequency readout (RF-SET). Charge quantization
of 2e is observed and microwave spectroscopy is used to extract the Josephson
and charging energies of the box. We perform coherent manipulation of the SCB
by using very fast DC pulses and observe quantum oscillations in time of the
charge that persist to ~=10ns. The observed contrast of the oscillations is
high and agrees with that expected from the finite E_J/E_C ratio and finite
rise-time of the DC pulses. In addition, we are able to demonstrate nearly 100%
initial charge state polarization. We also present a method to determine the
relaxation time T_1 when it is shorter than the measurement time T_{meas}.Comment: accepted for publication in Phys. Rev.
Decoherence of a Superposition of Macroscopic Current States in a SQUID
We show that fundamental conservation laws mandate parameter-free mechanisms
of decoherence of quantum oscillations of the superconducting current between
opposite directions in a SQUID -- emission of phonons and photons at the
oscillation frequency. The corresponding rates are computed and compared with
experimental findings. The decohering effects of external mechanical and
magnetic noise are investigated
- …