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Abstract

The SQUID used to measure the flux state of a superconducting flux-based qubit interacts with the qubit and

transmits its environmental noise to the qubit, thus causing the relaxation and dephasing of the qubit state. The

SQUID–qubit system is analyzed and the effect of the transmittal of environmental noise is calculated. The method

presented can also be applied to other quantum systems. � 2001 Elsevier Science B.V. All rights reserved.

PACS: 03.67.Lx; 74.90.þn; 85.25.Dq; 85.25.Cp J
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1. Introduction––the qubit

Present schemes for the measurement of a single
flux-based superconducting qubit usually employ a
SQUID as the measurement meter [1–6]. The me-
ter, however, is permanently coupled to the single
qubit and becomes entangled with it. This cou-
pling also allows a channel for the environment to
interact indirectly with the qubit to cause deco-
herence. Therefore, a detailed analysis of the par-
ticular measurement scheme is necessary for
engineering the decoherence to an acceptable level.
In this paper we will analyze a persistent current
qubit surrounded by a DC SQUID as the meter.

The method outlined here is applicable to other
flux-based qubits and other schemes of measure-
ments.
The persistent current qubit is a macroscopic

quantum system which consists of a supercon-
ducting ring interrupted by three Josephson junc-
tions [2].
When the external flux bias Uext ¼ fextU0 is near

fext ¼ 1=2, the periodic potential of the qubit has
two wells. These two lowest energy states corre-
spond to a persistent current Ipc circulating in
opposite directions, and these are the j0i and j1i
states of the qubit. The qubit is represented sym-
bolically in Fig. 1 as a ring with an up-arrow de-
noting the magnetic moment of the j0i state. Lpc is
the self-inductance of the qubit loop, LSQ is the
geometric inductance of the DC SQUID, M is the
mutual inductance. Is is the circulating current in
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the DC SQUID and Ib is the bias current. For both
loops, LiIi � U0.
A model Hamiltonian for these two states of

the qubit is Hq ¼ ð�0Þrz þ ðt0=2Þrx. Here, U� ¼
�U0Ipcðfext 	 1=2Þ is the potential energy of the
upper (lower) state caused by the magnetic field
for small self-inductance so that �0 ¼ Uþ 	 U	 ¼
2U0Ipcðfext 	 1=2Þ; and t0 is the coupling energy
due to tunneling. The corresponding energy dif-
ference m between the two states is m ¼ ð�20 þ t20Þ

1=2
.

Using an external oscillator, the energy level dif-
ference has been mapped out for the persistent
current qubit [4] and also for the RF-SQUID qubit
[5].

2. The meter

The state of the qubit adds or subtracts flux in
the loop of the DC SQUID. Because the critical
current Ic of the DC SQUID is modulated by the
total flux in its loop, the state of the qubit can be
inferred from the change DIc.
To be more quantitative, we consider the

Hamiltonian of the coupled systems. The DC
SQUID has two Josephson junctions which have
gauge-invariant phases euu1 and euu2 respectively.
For convenience of discussion, we assume the two
junctions are identical. When the self-inductance
LSQ and mutual inductance M of the SQUID are

considered, we have the flux quantization relation:euu1 	 euu2 ¼ 	2pðfext þ LSQIs=U0 þMIpc=U0Þ, where
Is is the circulating current in the DC SQUID. The
Lagrangian of the SQUID is L ¼ T 	 U , in terms
of euu1 and euu2,

T ¼ CJ
2

U0

2p
_euueuu1

� �2

þ CJ
2

U0

2p
_euueuu2

� �2

þ Csh
2

U0

4p
ð _euueuu1

�
þ _euueuu2Þ

�2

;

U ¼ 	ESQJ cos euu1 	 ESQJ cos euu2

þ LSQ
2

I2s 	 Ib
U0

4p
ðeuu1 þ euu2Þ

ð1Þ

where CJ is the junction capacitance, and Csh is the
shunt capacitance parallel to the SQUID. ESQJ ¼
I0U0=ð2pÞ is the Josephson energy of the junc-
tions in the SQUID. The first three terms in the
Lagrangian depend on the time derivatives of the
phase variables and are the charging energies of
the capacitances. U is the potential energy of the
SQUID, including the Josephson energies of the
junctions, the energy due to the self-inductance,
and the work done by the bias current Ib.
The Hamiltonian of the qubit–SQUID system

can be derived from the Lagrangian by adding the
qubit Hamiltonian Hq to the total energy. We
choose the independent variables of the SQUID to
be: euup ¼ ðeuu1 þ euu2Þ=2 and euum ¼ ðeuu1 	 euu2Þ=2. euup

is the external variable that directly correlates with
the ramping current Ib, and euum is the inner vari-
able that corresponds to the circulating current of
the SQUID. euum inductively couples with the qubit
flux. The total Hamiltonian of the qubit–SQUID
system is:

Ht ¼ Hq þ HSQ þ Hint;

Hq ¼
�0
2

rz þ
t0
2

rx;

HSQ ¼
P 2p
2mp

þ P 2m
2mm

	 2ESQJ cos euup cos euum

þ 2ESQJ
ðeuum þ pfextÞ2

bSQ
	 Ib

U0

2p
euup;

Hint ¼
4pfsE

SQ
J

bSQ
ðeuum þ pfextÞrz

ð2Þ

which includes the qubit Hamiltonian Hq, the
SQUID Hamiltonian HSQ under external flux fext,

Fig. 1. The measuring circuit of the DC SQUID which sur-

rounds the qubit. CJ and I0 are the capacitance and critical
current of each of the junctions, and euui are the gauge-invariant

phases of the junctions. The qubit is represented symbolically

by a loop with an arrow indicating the magnetic moment of the

j0i state. The SQUID is shunted by a capacitor Csh and the
environmental impedance Z0ðxÞ.
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and the qubit–SQUID interaction Hint. Pp and Pm
are the conjugate variables of the corresponding
phases. mm ¼ 2CJðU0=2pÞ2 is the mass of the inner
variable; mp ¼ ðCsh þ 2CJÞðU0=2pÞ2 is the mass of
the external variable. For convenience we in-
troduce bSQ ¼ 2pLSQI0=U0 to represent the self-
inductance.
Typical parameters of the experiments are:

ESQJ ¼ 40 GHz with I0 ¼ 80 nA, CJ ¼ 2 fF, Csh ¼ 5
pF, Lq ¼ 10, LSQ ¼ 16 pH and M ¼ 8 pH. The
circulating current of the qubit gives a flux of
f 
 10	3 flux quanta, which is coupled to the
SQUID by mutual inductance.
The mutual inductive coupling also changes the

flux through the qubit. However, since the mag-
netic energy of the qubit states is linear near
f ¼ 1=2, the potential energies of the upper and
lower states are U� ¼ �U0Ipcðfext þMIs=U0�
LqIpc=U0 	 1=2Þ where Lq is the self-inductance of
the qubit. Therefore, the energy difference is
� ¼ Uþ 	 U	 ¼ 2U0Ipcðfext þMIs=U0 	 1=2Þ. How-
ever, fext � MIs=U0 so that to lowest order, � does
not change; nevertheless, the mutual inductive
coupling will be important when we consider it as
the main channel through which environmental
noise interacts with the qubit. Also to first order
the tunneling does not change, so that Hq remains
the same.
The current Isw, at which the SQUID switches

from the zero voltage state to the finite voltage
state, is smaller than Ic due to thermal activation
and quantum tunneling. What is measured exper-
imentally then is a histogram of switching currents
for a given applied flux as the bias current Ib is
swept linearly in time. The circuitry which shunts
the SQUID affects the statistics of Isw [7–9]. An
underdamped SQUID has Isw < Ic and the histo-
grams are wide and require a number of repeated
measurements for the needed resolution. A
damped SQUID can give a narrow histogram at
the expense of decoherence. Hence, a compromise
is needed to damp the SQUID sufficiently to gain a
fast, sensitive readout while maintaining a long
coherence time. In this paper we will focus on
underdamped SQUIDs as used in the recent ex-
periments, but the method holds for damped
SQUIDs also. The repetition frequency of the
measurement of Isw is limited by the bandwidth of

the low pass filters used for the measurements and
by the read-out electronics. This limits the repeti-
tion frequency to the range of 10 kHz to 1 MHz. A
more efficient readout may be realized by mea-
suring the dynamical inductance of the SQUID
[11].

3. Decoherence engineering

The relaxation and dephasing times may be
found by solving the master equation for the re-
duced density in the spin–boson model [12,13].
The relaxation and dephasing times in terms of the
spectral density of the effective environmental
noise JeffðxÞ are
1

sr
¼ t20
2x2

0

JeffðxÞ coth �hx
2kBT

� �
x¼x0

;

1

s/
¼ 1

2sr
þ �20

x2
0

JeffðxÞ coth �hx
2kBT

� �
x!0

ð3Þ

where x ¼ m=�h is the frequency corresponding to
the average energy difference of the qubit states.
The environmental spectral density function is

calculated from the fluctuations in the energy lev-
els of the qubit, Jeff ¼ hd�d�i=�h2. Intuitively, the
change in the energy level � ¼ 2U0Ipcðfext þMIs=
U0 	 1=2Þ is d� ¼ 2IpcM dIs, where we have as-
sumed that the external bias field is constant and
the main source of fluctuations is the Johnson
noise acting through the circulating current in the
SQUID. The bias current for the SQUID is
Ib ¼ 2I0 cos euum sin euup and the circulating current is
Is ¼ 2I0 sin euum cos euup. Let euum 
 pfext so that

dIs
dt

¼ 	2I0 sinðpfextÞ sin euup

2p
U0

V ð4Þ

where V ¼ ðU0=2pÞdeuup=dt is the voltage across
the SQUID. Taking the Fourier transform of the
above and using the definition of Ib, we have

dIsðxÞ ¼ i
2p

xU0

Ib tanðpfextÞdV ðxÞ: ð5Þ

The fluctuations in the voltage are given by the
Johnson–Nyquist formula

hdV ðxÞdV ðxÞi ¼ �hxRefZtðxÞg coth �hx
2kBT

ð6Þ
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where ZtðxÞ is the total impedance seen by the
SQUID, which in the case of Fig. 1 is a parallel
combination of the environmental impedance and
the capacitor Csh. The spectral density function
becomes

JeffðxÞ ¼ 1

�hx
2pMIpc

U0

� �2

I2b

� tan2 ðpfextÞRefZtðxÞg coth �hx
2kBT

ð7Þ

where euum 
 pfext.
A more detailed analysis [13] begins by linea-

rizing the Hamiltonian, which was implicitly as-
sumed in the more intuitive approach. After
linearizing the potential energy near the energy
minimum, the SQUID variables behave as har-
monic oscillators interacting with each other, and
the Hamiltonian becomes

Ht ¼ Hq þ
P 2m
2mm

þ 1
2
mmx2

mðum þ du0rzÞ2

þ
P 2p
2mp

þ 1
2
mpx

2
pu

2
p þ J1umup: ð8Þ

The phases um ¼ euum 	 euu0
m and up ¼ euup 	 euu0

p are
the oscillator coordinates relative to the energy
minimum ðeuu0

m; euu0
pÞ. The inner oscillator frequency

depends on the self-inductance of the SQUID, LSQ,
and the capacitance of the junctions CJ, as xm ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2=LSQCJ

p
. In the experiment, the self-inductance

of the SQUID is weak with bL ¼ 2pLSQI0=U0 ¼
0:004. Hence xm 
 103 GHz is higher than all
the other relevant energies of the qubit–SQUID
system. As a result, the inner oscillator is slaved to
the qubit and follows the qubit’s dynamics even
during qubit operation. The external oscillator
frequency depends on the ramping current as
xp ¼ x0

p½1	 ðIb=IcÞ2�1=4 wherex0
p ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pIc=ðCshU0Þ

p
is the oscillator frequency at zero current and Ic is
the effective critical current of the SQUID under
external frustration. Typical numbers are x0

p ¼ 1:3
GHz and xp ¼ 1:0 GHz at Ib ¼ 0:8Ic. As Ib in-
creases the potential barrier decreases faster than
xp, and the linearization will become invalid when
Ib is close enough to the critical current. It can be
shown that the harmonic oscillator approximation
stays valid until Ib 
 0:95I0. However, in the pre-
sent experiment with a linear ramp of Ib, the

SQUID usually switches to the finite voltage state
before this current. In Eq. (8), the inner oscillator
coordinate um is offset by the qubit by �du0 when
rz ¼ �1. This offset originates from the inductive
interaction between the qubit and the SQUID:
du0 ¼ pMIpc=U0. The J1 term is the bilinear cou-
pling between um and up at the potential energy
minimum and is determined by the ramping cur-
rent Ib. We have J1 ¼ j tan euu0

mjIbU0=2p. When the
ramping current is turned off, the J1 coupling dis-
appears, and um and up interact via a higher order
term umu2p which brings negligible entanglement
with the qubit state.
Hence, we can divide the qubit–SQUID system

into two parts: the measured system that includes
the qubit and the inner oscillator of the SQUID;
and the ‘‘meter’’ that is the external oscillator of
the SQUID. The current ramping process is the
system–meter entanglement process. When the
SQUID switches, the meter variable escapes from
the supercurrent branch to the finite voltage branch
and a macroscopically distinguishable record is
obtained; in the process, the coherence of the sys-
tem is completely destroyed by quasiparticle exci-
tations at the gap voltage. Note that the switching
current in any given measurement is not perfectly
correlated with the state of the qubit. In other
words the measurement is not strictly speaking a
von Neumann measurement, but rather a more
general positive operator valued measurement [14].
The effect of the environmental noise is included

by adding to the Hamiltonian a bath of oscillators
which are coupled to the modes of the system. In
this case we only include the coupling to the ex-
ternal up modes of the SQUID as the major source
of noise. The spectral density of the bath is de-
scribed by the Johnson–Nyquist spectral density of
ZtðxÞ, the shunting impedance [15]. The problem
can then be recast in terms of an effective bath that
the qubit itself sees; that is, the inner and external
SQUID oscillations are absorbed into an effective
bath. The spectral density of this effective bath can
be found from the generalized susceptibility of the
qubit by writing the equations of motion for the
linearized Hamiltonian and considering the vari-
ables as classical variables [16,17].
By treating the Hamiltonian classically, the re-

sulting equations of motion describe the time
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evolution of the average of the quantum variables
rz, um, and up. For the example in Fig. 1, the re-
sulting linear equations can be represented by the
equivalent circuit in Fig. 2 [13]. The reservoir of
the SQUID has been modeled as an impedance
Z0ðxÞ. The effective admittance Yeff of this circuit is
the inductance of qubit in parallel with a contri-
bution from the outer circuits through the mu-
tual inductive coupling with the inner oscillator.
This contribution depends on the SQUID oscilla-
tor parameters and the impedance Z0. The current
noise from this effective admittance is JeffðxÞ ¼
ð�hx=4e2ÞRe½Yeff �. When xm � xp;x, we have:

JeffðxÞ 
 ðeIbMIpcÞ2

C2
sh�h

3Rsh

x

ðx2 	 x2
pÞ
2 þ ðx=RshCshÞ2

ð9Þ

where Csh is the SQUID shunt capacitance and the
shunt impedance Z0 is simplified as a resistor Rsh.
At x 
 x0, the noise is filtered by a factor of
ðxp=xÞ4. When x � xp, a sharp Lorenzian peak
appears in the spectrum that has a width of
ðRshCshÞ	1.
Once JeffðxÞ is known, the decoherence and

relaxation times can be calculated from Eq. (3).

We use the experimental parameters of Csh ¼ 5 pF,
M ¼ 8 pH, Ipc ¼ 80 nA and Ib ¼ 0:8Ic, and we
assume an environmental impedance of Rsh ¼
100 X. At a temperature of 20 mK the derived
decoherence time is then s/ ¼ 4 ls at Ib ¼ 0:8Ic,
and the relaxation time is sr ¼ 0:3 s. The deco-
herence time is shorter than the estimated intrinsic
noise decoherence of 0.1 ms [18]; while the relax-
ation time is long enough so that it will not hin-
der the extraction of accurate information of the
qubit states.

4. Summary

The DC SQUID decoheres the qubit during the
measurement, when the bias current of the SQUID
is ramped up to measure the qubit’s state. This
means that while the SQUID’s bias current is zero,
it does not contribute to the decoherence of the
qubit, and thus it does not degrade the Q (the
number of operations which can be performed
prior to qubit decoherence). Assuming that the
operations have been completed, the only consid-
eration required is whether the SQUID’s bias
current can be ramped to the switching point be-
fore the qubit can relax to its ground state,
tramp < sr. In the recent qubit experiments [4],
however, excitations are applied to the qubit si-
multaneous to the ramping of the SQUID’s cur-
rent. This results in the application of the
SQUID’s dephasing at the same time as the logical
operation, resulting in the short dephasing time
observed. Note that this technique for calculating
the decoherence can be applied to other circuits,
some of which continuously couple to the qubit.
Similar analyses have been done for a shunting

circuit which includes a resistor [10,19] and the
coupling of an external driving circuit to this qu-
bit, both by an external oscillator [10,19] and an
on-chip oscillator [20].
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