18 research outputs found

    Iron Behaving Badly: Inappropriate Iron Chelation as a Major Contributor to the Aetiology of Vascular and Other Progressive Inflammatory and Degenerative Diseases

    Get PDF
    The production of peroxide and superoxide is an inevitable consequence of aerobic metabolism, and while these particular "reactive oxygen species" (ROSs) can exhibit a number of biological effects, they are not of themselves excessively reactive and thus they are not especially damaging at physiological concentrations. However, their reactions with poorly liganded iron species can lead to the catalytic production of the very reactive and dangerous hydroxyl radical, which is exceptionally damaging, and a major cause of chronic inflammation. We review the considerable and wide-ranging evidence for the involvement of this combination of (su)peroxide and poorly liganded iron in a large number of physiological and indeed pathological processes and inflammatory disorders, especially those involving the progressive degradation of cellular and organismal performance. These diseases share a great many similarities and thus might be considered to have a common cause (i.e. iron-catalysed free radical and especially hydroxyl radical generation). The studies reviewed include those focused on a series of cardiovascular, metabolic and neurological diseases, where iron can be found at the sites of plaques and lesions, as well as studies showing the significance of iron to aging and longevity. The effective chelation of iron by natural or synthetic ligands is thus of major physiological (and potentially therapeutic) importance. As systems properties, we need to recognise that physiological observables have multiple molecular causes, and studying them in isolation leads to inconsistent patterns of apparent causality when it is the simultaneous combination of multiple factors that is responsible. This explains, for instance, the decidedly mixed effects of antioxidants that have been observed, etc...Comment: 159 pages, including 9 Figs and 2184 reference

    Investigating the interactive mechanisms between surface water and groundwater over the Jhuoshuei river basin in central Taiwan

    No full text
    [[abstract]]In Taiwan, groundwater commonly becomes important water resources in dry periods, and/or areas lack of water storage facility due to its low cost, steady water supply and good water quality. However, improper groundwater development brings about serious decreases in groundwater levels and land subsidence which causes disasters, such as seawater intrusion or soil salination, accompanied with environmental and economic losses. It is critical to develop strategies for water resources conservation in mountainous areas. The complex heterogeneity of mountainous physiographic environment makes it challenging in the forecasts of groundwater level variations, particularly in mountainous areas. Artificial neural networks (ANNs) have been recognized as an effective modeling tool for complex nonlinear systems in the last two decades. This study aims to investigate the interactive mechanisms of groundwater at the mountainous areas of the Jhuoshuei river basin in central Taiwan through analyzing and modeling the groundwater level variations. Several issues are discussed in this study, which includes the correlation between groundwater level variation and rainfall as well as streamflow, the identification of groundwater recharge patterns and effective rainfall thresholds for estimating groundwater level variations. The results indicate: (1) the daily variation of groundwater level is closely correlated with river flow and one-day antecedent rainfall based on correlation analyses; (2) effective rainfall thresholds can be identified successfully; (3) groundwater level variations can be classified into four types for monitoring wells; and (4) the daily variations of groundwater level can be well estimated by constructed ANNs. The identified interactive mechanisms between surface water and groundwater can facilitate the mountainous water resource conservation strategy for better water management, especially irrigation water supply and for alleviating land subsidence in downstream areas in the future.[[incitationindex]]SCI[[booktype]]電子版[[booktype]]紙

    Genetic basis of the neurophysiological findings

    No full text
    Migraine is a complex polygenic disorder of the brain. Specific genes might be responsible for the condition due to the considerable clinical, epidemiological and evolutionary variability and interictal neurophysiological properties. Several studies have found that abnormal processing of a wide range of sensory stimuli is characteristic between attacks of patients that suffer from migraines. These neurophysiological abnormalities were significantly correlated between children that have migraines and their affected parents. Similar electrocortical abnormalities have been observed in relatives apparently free of migraine. This intermediate electrophysiological phenotype was linked to the polymorphism of single genes, such as that of MTHFR and ACE, but was further influenced by several environmental factors. Monogenic dominant forms of familial hemiplegic migraine did not show the same neurophysiological patterns as the most prevalent forms of episodic migraine. Therefore, abnormal information processing can be considered a neurophysiological endophenotypic trait associated with the expression of genetic factors that make an individual vulnerable to the non-monogenic forms of migraine

    The genomic landscape of balanced cytogenetic abnormalities associated with human congenital anomalies

    No full text
    corecore