23 research outputs found

    The CODECS study:COgnitive DEficits in Cerebellar Stroke

    Get PDF
    Part of the extra-pyramidal system, the cerebellum is more and more recognized by its non-motor functions known as the cerebellar cognitive affective syndrome. Several studies have identified disturbances specifically in executive and attentional functions after focal cerebellar lesions. However, most studies were performed in small and heterogeneous patient groups. Furthermore, there is a substantial variation in the methodology of assessment. Here, we present the results of a large and homogeneous cohort of patients with isolated uniform cerebellar lesions. After three months post-stroke all patients underwent structural neuroimaging to confirm an isolated lesion and were given neuropsychological testing. The results show that cerebellar lesions relate to mild but long-term cognitive impairment in a broad spectrum of neurocognitive functions compared to normative values. These findings confirm involvement of the cerebellum in cognitive processing and supports the theory of ‘dysmetria of thought’ based upon uniform cerebellar processing in multiple cognitive domains. This study highlights the following results: 1-Cognitive impairments after isolated cerebellar stroke is confirmed in several cognitive domains. 2-Semantic and phonemic fluency are most affected in cerebellar stroke patients. 3-Verbal deficits show an age-independent long term effect post-stroke and should be studied further in depth. 4-Cognitive disorders after cerebellar stroke are more prominent in women than men.</p

    Modulation of murine olivary connexin 36 gap junctions by PKA and CaMKII

    Get PDF
    The inferior olive (IO) is a nucleus located in the brainstem and it is part of the olivo-cerebellar loop. This circuit plays a fundamental role in generation and acquisition of coherent motor patterns and it relies on synchronous activation of groups of Purkinje cells (PC) in the cerebellar cortex. IO neurons integrate their intrinsic oscillatory activity with excitatory inputs coming from the somatosensory system and inhibitory feedback coming from the cerebellar nuclei. Alongside these chemical synaptic inputs, IO neurons are coupled to one another via connexin 36 (Cx36) containing gap junctions (GJs) that create a functional syncytium between neurons. Communication between olivary neurons is regulated by these GJs and their correct functioning contributes to coherent oscillations in the IO and proper motor learning. Here, we explore the cellular pathways that can regulate the coupling between olivary neurons. We combined in vitroelectrophysiology and immunohistochemistry (IHC) on mouse acute brain slices to unravel the pathways that regulate olivary coupling. We found that enhancing the activity of the protein kinase A (PKA) pathway and blocking the Ca2+/calmodulin-dependent protein kinase II (CaMKII) pathway can both down-regulate the size of the coupled network. However, these two kinases follow different mechanisms of action. Our results suggest that activation of the PKA pathway reduces the opening probability of the Cx36 GJs, whereas inhibition of the CaMKII pathway reduces the number of Cx36 GJs. The low densities of Cx36 proteins and electrical synapses in βCaMKII knock-out mice point towards an essential role for this protein kinase in regulating the density of GJs in the IO. Thus, the level of olivary coupling is a dynamic process and regulated by a variety of enzymes modulating GJs expression, docking and activity

    Anti-Malaria Drug Mefloquine Induces Motor Learning Deficits in Humans

    Get PDF
    Mefloquine (a marketed anti-malaria drug) prophylaxis has a high risk of causing adverse events. Interestingly, animal studies have shown that mefloquine imposes a major deficit in motor learning skills by affecting the connexin 36 gap junctions of the inferior olive. We were therefore interested in assessing whether mefloquine might induce similar effects in humans. The main aim of this study was to investigate the effect of mefloquine on olivary-related motor performance and motor learning tasks in humans. We subjected nine participants to voluntary motor timing (dart throwing task), perceptual timing (rhythm perceptual task) and reflex timing tasks (eye-blink task) before and 24 h after the intake of mefloquine. The influence of mefloquine on motor learning was assessed by subjecting participants with and without mefloquine intake (controls: n = 11 vs mefloquine: n = 8) to an eye-blink conditioning task. Voluntary motor performance, perceptual timing, and reflex blinking were not affected by mefloquine use. However, the influence of mefloquine on motor learning was substantial; both learning speed as well as learning capacity was impaired by mefloquine use. Our data suggest that mefloquine disturbs motor learning skills. This adverse effect can have clinical as well as social clinical implications for mefloquine users. Therefore, this side-effect of mefloquine should be further investigated and recognized by clinicians

    Strategic white matter hyperintensity locations associated with post-stroke cognitive impairment:A multicenter study in 1568 stroke patients

    Get PDF
    Background: Post-stroke cognitive impairment (PSCI) occurs in up to 50% of stroke survivors. Presence of pre-existing vascular brain injury, in particular the extent of white matter hyperintensities (WMH), is associated with worse cognitive outcome after stroke, but the role of WMH location in this association is unclear.Aims: We determined if WMH in strategic white matter tracts explain cognitive performance after stroke.Methods: Individual patient data from nine ischemic stroke cohorts with magnetic resonance imaging (MRI) were harmonized through the Meta VCI Map consortium. The association between WMH volumes in strategic tracts and domain-specific cognitive functioning (attention and executive functioning, information processing speed, language and verbal memory) was assessed using linear mixed models and lasso regression. We used a hypothesis-driven design, primarily addressing four white matter tracts known to be strategic in memory clinic patients: the left and right anterior thalamic radiation, forceps major, and left inferior fronto-occipital fasciculus.Results: The total study sample consisted of 1568 patients (39.9% female, mean age = 67.3 years). Total WMH volume was strongly related to cognitive performance on all four cognitive domains. WMH volume in the left anterior thalamic radiation was significantly associated with cognitive performance on attention and executive functioning and information processing speed and WMH volume in the forceps major with information processing speed. The multivariable lasso regression showed that these associations were independent of age, sex, education, and total infarct volume and had larger coefficients than total WMH volume.Conclusion: These results show tract-specific relations between WMH volume and cognitive performance after ischemic stroke, independent of total WMH volume. This implies that the concept of strategic lesions in PSCI extends beyond acute infarcts and also involves pre-existing WMH.Data access statement: The Meta VCI Map consortium is dedicated to data sharing, following our guidelines

    Strategic white matter hyperintensity locations associated with post-stroke cognitive impairment:A multicenter study in 1568 stroke patients

    Get PDF
    Background: Post-stroke cognitive impairment (PSCI) occurs in up to 50% of stroke survivors. Presence of pre-existing vascular brain injury, in particular the extent of white matter hyperintensities (WMH), is associated with worse cognitive outcome after stroke, but the role of WMH location in this association is unclear.Aims: We determined if WMH in strategic white matter tracts explain cognitive performance after stroke.Methods: Individual patient data from nine ischemic stroke cohorts with magnetic resonance imaging (MRI) were harmonized through the Meta VCI Map consortium. The association between WMH volumes in strategic tracts and domain-specific cognitive functioning (attention and executive functioning, information processing speed, language and verbal memory) was assessed using linear mixed models and lasso regression. We used a hypothesis-driven design, primarily addressing four white matter tracts known to be strategic in memory clinic patients: the left and right anterior thalamic radiation, forceps major, and left inferior fronto-occipital fasciculus.Results: The total study sample consisted of 1568 patients (39.9% female, mean age = 67.3 years). Total WMH volume was strongly related to cognitive performance on all four cognitive domains. WMH volume in the left anterior thalamic radiation was significantly associated with cognitive performance on attention and executive functioning and information processing speed and WMH volume in the forceps major with information processing speed. The multivariable lasso regression showed that these associations were independent of age, sex, education, and total infarct volume and had larger coefficients than total WMH volume.Conclusion: These results show tract-specific relations between WMH volume and cognitive performance after ischemic stroke, independent of total WMH volume. This implies that the concept of strategic lesions in PSCI extends beyond acute infarcts and also involves pre-existing WMH.Data access statement: The Meta VCI Map consortium is dedicated to data sharing, following our guidelines

    Second primary cancers after radiation for prostate cancer: a review of data from planning studies

    Get PDF
    A review of planning studies was undertaken to evaluate estimated risks of radiation induced second primary cancers (RISPC) associated with different prostate radiotherapy techniques for localised prostate cancer. A total of 83 publications were identified which employed a variety of methods to estimate RISPC risk. Of these, the 16 planning studies which specifically addressed absolute or relative second cancer risk using dose–response models were selected for inclusion within this review. There are uncertainties and limitations related to all the different methods for estimating RISPC risk. Whether or not dose models include the effects of the primary radiation beam, as well as out-of-field regions, influences estimated risks. Regarding the impact of IMRT compared to 3D-CRT, at equivalent energies, several studies suggest an increase in risk related to increased leakage contributing to out-of-field RISPC risk, although in absolute terms this increase in risk may be very small. IMRT also results in increased low dose normal tissue irradiation, but the extent to which this has been estimated to contribute to RISPC risk is variable, and may also be very small. IMRT is often delivered using 6MV photons while conventional radiotherapy often requires higher energies to achieve adequate tissue penetration, and so comparisons between IMRT and older techniques should not be restricted to equivalent energies. Proton and brachytherapy planning studies suggest very low RISPC risks associated with these techniques. Until there is sufficient clinical evidence regarding RISPC risks associated with modern irradiation techniques, the data produced from planning studies is relevant when considering which patients to irradiate, and which technique to employ

    Sex Differences in Poststroke Cognitive Impairment: A Multicenter Study in 2343 Patients With Acute Ischemic Stroke

    Get PDF
    BACKGROUND: Poststroke cognitive impairment (PSCI) occurs in about half of stroke survivors. Cumulative evidence indicates that functional outcomes of stroke are worse in women than men. Yet it is unknown whether the occurrence and characteristics of PSCI differ between men and women. METHODS: Individual patient data from 9 cohorts of patients with ischemic stroke were harmonized and pooled through the Meta-VCI-Map consortium (n=2343, 38% women). We included patients with visible symptomatic infarcts on computed tomography/magnetic resonance imaging and cognitive assessment within 15 months after stroke. PSCI was defined as impairment in ≥1 cognitive domains on neuropsychological assessment. Logistic regression analyses were performed to compare men to women, adjusted for study cohort, to obtain odds ratios for PSCI and individual cognitive domains. We also explored sensitivity and specificity of cognitive screening tools for detecting PSCI, according to sex (Mini-Mental State Examination, 4 cohorts, n=1814; Montreal Cognitive Assessment, 3 cohorts, n=278). RESULTS: PSCI was found in 51% of both women and men. Men had a lower risk of impairment of attention and executive functioning (men: odds ratio, 0.76 [95% CI, 0.61-0.96]), and language (men: odds ratio, 0.67 [95% CI, 0.45-0.85]), but a higher risk of verbal memory impairment (men: odds ratio, 1.43 [95% CI, 1.17-1.75]). The sensitivity of Mini-Mental State Examination (<25) for PSCI was higher for women (0.53) than for men (0.27; P=0.02), with a lower specificity for women (0.80) than men (0.96; P=0.01). Sensitivity and specificity of Montreal Cognitive Assessment (<26.) for PSCI was comparable between women and men (0.91 versus 0.86; P=0.62 and 0.29 versus 0.28; P=0.86, respectively). CONCLUSIONS: Sex was not associated with PSCI occurrence but affected domains differed between men and women. The latter may explain why sensitivity of the Mini-Mental State Examination for detecting PSCI was higher in women with a lower specificity compared with men. These sex differences need to be considered when screening for and diagnosing PSCI in clinical practice

    Sex Differences in Poststroke Cognitive Impairment : A Multicenter Study in 2343 Patients With Acute Ischemic Stroke

    Get PDF
    Funding Information: Dr Exalto is supported by Alzheimer Nederland WE.03-2019-15 and Netherlands CardioVascular Research Initiative: the Dutch Heart Foundation (CVON 2018-28 & 2012-06). The Meta-VCI Map consortium is supported by Vici Grant 918.16.616 from The Netherlands Organisation for Health Research and Development (ZonMw) to Dr Biessels. Harmonization analyses were supported by a Rudolf Magnus Young Talent Fellowship from the University Medical Center Utrecht Brain Center to Dr Biesbroek. The CASPER cohort was supported by Maastricht University, Health Foundation Limburg, and Stichting Adriana van Rinsum-Ponsen. The CROMIS-2 cohort was funded by the UK Stroke Association and the British Heart Foundation (grant number TSA BHF 2009/01). The CU-STRIDE cohort was supported by the Health and Health Services Research Fund of the Food and Health Bureau of the Government of Hong Kong (grant number 0708041), the Lui Che Woo Institute of Innovative Medicine, and Therese Pei Fong Chow Research Center for Prevention of Dementia. The GRECogVASC cohort was funded by Amiens University Hospital and by a grant from the French Ministry of Health (grant number DGOS R1/2013/144). The MSS-2 cohort is funded by the Wellcome Trust (grant number WT088134/Z/09/A to Dr Wardlaw) and the Row Fogo Charitable Trust. The PROCRAS cohort was funded via ZonMW as part of the TopZorg project in 2015 (grant number 842003011). The CODECS cohort (ongoing) is supported by a grant from Stichting Coolsingel (grant number 514). The Bundang VCI and Hallym VCI cohort groups do not wish to report any relevant funding sources. At the time of contribution, Dr Hamilton was funded by the College of Medicine and Veterinary Medicine at the University of Edinburgh and was supported by the Wellcome Trust through the Translational Neuroscience PhD program at the University of Edinburgh. Publisher Copyright: © 2023 Lippincott Williams and Wilkins. All rights reserved.Peer reviewedPublisher PD

    Network impact score is an independent predictor of post-stroke cognitive impairment: A multicenter cohort study in 2341 patients with acute ischemic stroke

    Get PDF
    BACKGROUND: Post-stroke cognitive impairment (PSCI) is a common consequence of stroke. Accurate prediction of PSCI risk is challenging. The recently developed network impact score, which integrates information on infarct location and size with brain network topology, may improve PSCI risk prediction. AIMS: To determine if the network impact score is an independent predictor of PSCI, and of cognitive recovery or decline. METHODS: We pooled data from patients with acute ischemic stroke from 12 cohorts through the Meta VCI Map consortium. PSCI was defined as impairment in ≥ 1 cognitive domain on neuropsychological examination, or abnormal Montreal Cognitive Assessment. Cognitive recovery was defined as conversion from PSCI 24 months) and cognitive recovery or decline using logistic regression. Models were adjusted for age, sex, education, prior stroke, infarct volume, and study site. RESULTS: We included 2341 patients with 4657 cognitive assessments. PSCI was present in 398/844 patients (47%) 24 months. Cognitive recovery occurred in 64/181 (35%) patients and cognitive decline in 26/287 (9%). The network impact score predicted PSCI in the univariable (OR 1.50, 95%CI 1.34-1.68) and multivariable (OR 1.27, 95%CI 1.10-1.46) GEE model, with similar ORs in the logistic regression models for specified post-stroke intervals. The network impact score was not associated with cognitive recovery or decline. CONCLUSIONS: The network impact score is an independent predictor of PSCI. As such, the network impact score may contribute to a more precise and individualized cognitive prognostication in patients with ischemic stroke. Future studies should address if multimodal prediction models, combining the network impact score with demographics, clinical characteristics and other advanced brain imaging biomarkers, will provide accurate individualized prediction of PSCI. A tool for calculating the network impact score is freely available at https://metavcimap.org/features/software-tools/lsm-viewer/

    Cerebellar-Induced Aphasia After Stroke:Evidence for the “Linguistic Cerebellum”

    Get PDF
    The cerebellum is traditionally known to subserve motor functions. However, for several decades, the concept of the “cerebellar cognitive affective syndrome” has evolved. Studies in healthy participants and patients have confirmed the cerebellar role in language. The exact involvement of the cerebellum regarding cerebellar aphasia remains uncertain. We included 43 cerebellar stroke patients who were tested at 3 months post-onset with the Boston Naming Test (BNT), the Token Test (TT), and the Diagnostic Instrument for Mild Aphasia (DIMA). Lesion side (left/right) and volume (cm3) were investigated. Patients significantly deviated on the following: BNT (p&lt;0.001), TT (p&lt;0.05), DIMA subtests: sentences repetition (p=0.001), semantic odd-picture-out (p&lt;0.05), sentence completion (p&lt;0.05) without an effect of lesion location (left/right) or volume (cm3) (p&gt;0.05). Our clinical study confirms a non-lateralized cerebellar aphasia post-stroke, characterized by impairments in word retrieval, phonology, semantics, and syntax resembling cerebral-induced aphasia. The integral cerebellum appears to interact with eloquent cortico-subcortical language areas.</p
    corecore