210 research outputs found

    Effect of a pre-milking teat foam and a liner disinfectant on the presence of mesophilic and (proteolytic) psychrotrophic bacteria prior to milking

    Get PDF
    Contamination of raw milk by psychrotrophs can lead to the production of heat-resistant proteases and subsequent spoilage of UHT milk. Therefore, this research communication evaluated the effect of a pre-milking teat disinfectant (active components: L-(+)-lactic acid and salicylic acid) and a liner disinfectant (active components: peracetic acid and hydrogen peroxide) on the number of mesophilic and (proteolytic) psychrotrophic bacteria prior to milking. The teat orifices of 10 cows were sampled using a swabbing procedure before and after treatment with a pre-milking teat disinfectant on six subsequent days. On the teat orifices, there was a small but statistically significant decrease in the psychrotrophic bacterial counts between pre and post dipping. No differences were observed for the mesophilic bacterial counts and proteolytic active counts. Liners were also sampled using swabs pre and post disinfection. No statistically significant decrease in the bacterial counts was observed post liner disinfection, although there was a numerical decrease. Sixty-two percent of the proteolytic psychrotrophs were pseudomonads: 16.5% of which were P. fragi, 14.3% P. lundensis, 10.0% P. fluorescens and 2.9% P. putida. Trinitrobenzenesulfonic acid (TNBS) analysis revealed a wide variety in proteolytic activity (from 0 to 55 mu mol glycine/ml milk) and the presence of high producers. It can be concluded that there was only a minor effect of teat and liner disinfection on the psychrotrophic bacterial counts indicating that the measures presented did not result in a reduction of the targeted bacteria on teat orifices and liners

    Supporting the development and adoption of automatic lameness detection systems in dairy cattle : effect of system cost and performance on potential market shares

    Get PDF
    Most automatic lameness detection system prototypes have not yet been commercialized, and are hence not yet adopted in practice. Therefore, the objective of this study was to simulate the effect of detection performance (percentage missed lame cows and percentage false alarms) and system cost on the potential market share of three automatic lameness detection systems relative to visual detection: a system attached to the cow, a walkover system, and a camera system. Simulations were done using a utility model derived from survey responses obtained from dairy farmers in Flanders, Belgium. Overall, systems attached to the cow had the largest market potential, but were still not competitive with visual detection. Increasing the detection performance or lowering the system cost led to higher market shares for automatic systems at the expense of visual detection. The willingness to pay for extra performance was (sic)2.57 per % less missed lame cows, (sic)1.65 per % less false alerts, and (sic)12.7 for lame leg indication, respectively. The presented results could be exploited by system designers to determine the effect of adjustments to the technology on a system's potential adoption rate

    Exposure of ciprofloxacin-resistant Escherichia coli broiler isolates to subinhibitory concentrations of a quaternary ammonium compound does not increase antibiotic resistance gene transfer

    Get PDF
    Resistance to antibiotics threatens to become a worldwide health problem. An important attributing phenomenon in this context is that pathogens can acquire antibiotic resistance genes through conjugative transfer of plasmids. To prevent bacterial infections in agricultural settings, the use of veterinary hygiene products, such as disinfectants, has gained popularity and questions have been raised about their contribution to such spreading of antibiotic resistance. Therefore, this study investigated the effect of subinhibitory concentrations of benzalkoniumchloride (BKC), a quaternary ammonium compound (QAC), on the conjugative transfer of antibiotic resistance genes. Five Escherichia coli field strains originating from broiler chickens and with known transferable plasmid-mediated ciprofloxacin resistance were exposed to subinhibitory BKC concentrations: 1/3, 1/10 and 1/30 of the minimum bactericidal concentration. Antibiotic resistance transfer was assessed by liquid mating for 4 h at 25 degrees C using E. coli K12 MG1655 as recipient strain. The transfer ratio was calculated as the number of transconjugants divided by the number of recipients. Without exposure to BKC, the strains showed a ciprofloxacin resistance transfer ratio ranging from 10(-4) to 10(-7). No significant effect of exposure to subinhibitory concentrations of BKC was observed on this transfer ratio

    A 10-day vacancy period after cleaning and disinfection has no effect on the bacterial load in pig nursery units

    Get PDF
    Background: Biosecurity measures such as cleaning, disinfection and a vacancy period between production cycles on pig farms are essential to prevent disease outbreaks. No studies have tested the effect of a longer vacancy period on bacterial load in nursery units. Methods: The present study evaluated the effect of a 10-day vacancy period in pig nursery units on total aerobic flora, Enterococcus spp., Escherichia coli, faecal coliforms and methicillin resistant Staphylococcus aureus (MRSA). Three vacancy periods of 10 days were monitored, each time applied in 3 units. The microbiological load was measured before disinfection and at 1, 4, 7 and 10 days after disinfection. Results: No significant decrease or increase in E. coli, faecal coliforms, MRSA and Enterococcus spp. was noticed. Total aerobic flora counts were the lowest on day 4 after disinfection (i.e. 4.07 log CFU/625 cm(2)) (P < 0.05), but the difference with other sampling moments was limited (i.e. 0.6 log CFU/625 cm(2)) and therefore negligible. Furthermore, this observation on day 4 was not confirmed for the other microbiological parameters. After disinfection, drinking nipples were still mostly contaminated with total aerobic flora (i.e. 5.32 log CFU/625 cm(2)) and Enterococcus spp. (i.e. 95 % of the samples were positive) (P < 0.01); the feeding troughs were the cleanest location (total aerobic flora: 3.53 log CFU/625 cm(2) and Enterococcus spp.: 50 % positive samples) (P < 0.01). Conclusions: This study indicates that prolonging the vacancy period in nursery units to 10 days after disinfection with no extra biosecurity measures has no impact on the environmental load of total aerobic flora, E. coli, faecal coliforms, MRSA and Enterococcus spp.

    Measuring teat dimensions using image analysis

    Get PDF
    The interaction between teat and teatcup liner can strongly affect the milking characteristics and udder health. Therefore teat morphology is an important parameter in choosing the most appropriate liner. Nevertheless, teat morphology is rarely considered in choosing a teatcup liner. Gathering information on teat morphology on large scale with current techniques is time consuming, subjective and not always accurate. However, the ability to measure teat shape parameters in an easy way and on large scale has many applications. This study presents a new vision based measuring system that uses a camera to obtain a 2D image of the teat and image processing analyses to determine teat length and diameters. The technique is proven to be accurate (error less than 6%), repeatable and reproducible for both teat length and diameters

    Pseudomonas putida as a potential biocontrol agent against Salmonella Java biofilm formation in the drinking water system of broiler houses

    Get PDF
    Background Environmental biofilms can induce attachment and protection of other microorganisms including pathogens, but can also prevent them from invasion and colonization. This opens the possibility for so-called biocontrol strategies, wherein microorganisms are applied to control the presence of other microbes. The potential for both positive and negative interactions between microbes, however, raises the need for in depth characterization of the sociobiology of candidate biocontrol agents (BCAs). The inside of the drinking water system (DWS) of broiler houses is an interesting niche to apply BCAs, because contamination of these systems with pathogens plays an important role in the infection of broiler chickens and consequently humans. In this study, Pseudomonas putida, which is part of the natural microbiota in the DWS of broiler houses, was evaluated as BCA against the broiler pathogen Salmonella Java. Results To study the interaction between these species, an in vitro model was developed simulating biofilm formation in the drinking water system of broilers. Dual-species biofilms of P. putida strains P1, P2, and P3 with S. Java were characterized by competitive interactions, independent of P. putida strain, S. Java inoculum density and application order. When equal inocula of S. Java and P. putida strains P1 or P3 were simultaneously applied, the interaction was characterized by mutual inhibition, whereas P. putida strain P2 showed an exploitation of S. Java. Lowering the inoculum density of S. Java changed the interaction with P. putida strain P3 also into an exploitation of S. Java. A further increase in S. Java inhibition was established by P. putida strain P3 forming a mature biofilm before applying S. Java. Conclusions This study provides the first results showing the potential of P. putida as BCA against S. Java in the broiler environment. Future work should include more complex microbial communities residing in the DWS, additional Salmonella strains as well as chemicals typically used to clean and disinfect the system

    Is competitive exclusion a valuable alternative for classical cleaning and disinfection of pig-growing units?

    Get PDF
    Colonization of the environment of pig-growing units by pathogenic microrganisms is an important factor in development of endemic diseases in pigs and, in spreading of zoonotic diseases. These pathogens are mostly controlled by the use of antibiotics and disinfection during vacancy. Because, the past years an increasing resistance against these measures is noticed, alternative methods such as competitive exclusion (CE) are promoted as promising. In this study the effect of a CE protocol on the bacterial infection in piggrowing units was compared to a classical cleaning and disinfection (C&D) protocol. Tests were performed during three successive production rounds using multiple identical pig-growing units. CE protocol consisted of cleaning (no disinfection) after loading piglets and spraying probiotic bacteria (Bacillus spp. spores) during vacancy and production. The cleaning product also contained Bacillus spores. Sampling was performed at different time-points: immediately after pig loading (manure still present); 24 hours after cleaning (CE units) or after disinfection (control units); after one week and five weeks of production (piglets present). At each time point, swab samples for analyses were taken. Enumerations of bacterial spores, Enterococcus spp., E. coli, fecal coliforms and MRSA and detections of E. coli, fecal coliforms and MRSA were performed. Next to bacterial analyses, also feed conversion and fecal consistency was monitored. This study showed that, although probiotic spores were administered well, the analyzed bacteria were not decreased after three production rounds in CE units and remained on the same level as the control units (C&D). Also, the infection pressure in CE units during vacancy was not as much reduced as after the disinfection-step in control units. Finally, no differences in feed conversion and fecal consistency were found. These results indicate that the used CE protocol is not a valuable alternative for classical C&D

    Comparison of competitive exclusion with classical cleaning and disinfection on bacterial load in pig nursery units

    Get PDF
    Background: Colonisation of the environment of nursery units by pathogenic micro-organisms is an important factor in the persistence and spread of endemic diseases in pigs and zoonotic pathogens. These pathogens are generally controlled by the use of antibiotics and disinfectants. Since an increasing resistance against these measures has been reported in recent years, methods such as competitive exclusion (CE) are promoted as promising alternatives. Results: This study showed that the infection pressure in CE units after microbial cleaning was not reduced to the same degree as in control units. Despite sufficient administration of probiotic-type spores, the analysed bacteria did not decrease in number after 3 production rounds in CE units, indicating no competitive exclusion. In addition, no differences in feed conversion were found between piglets raised in CE and control units in our study. Also, no differences in faecal consistency (indicator for enteric diseases) was noticed. Conclusion: These results indicate that the CE protocol is not a valuable alternative for classical C&D
    corecore