63 research outputs found

    Sustained neuronal activation raises oxidative metabolism to a new steady-state level: Evidence from 1H NMR spectroscopy in the human visual cortex

    Get PDF
    To date, functional 1H NMR spectroscopy has been utilized to report the time courses of few metabolites, primarily lactate. Benefiting from the sensitivity offered by ultra-high magnetic field (7 T), the concentrations of 17 metabolites were measured in the human visual cortex during two paradigms of visual stimulation lasting 5.3 and 10.6 mins. Significant concentration changes of approximately 0.2 μmol/g were observed for several metabolites: lactate increased by 23%±5% (P<0.0005), glutamate increased by 3%±1% (P<0.01), whereas aspartate decreased by 15%±6% (P<0.05). Glucose concentration also manifested a tendency to decrease during activation periods. The lactate concentration reached the new steady-state level within the first minute of activation and came back to baseline only after the stimulus ended. The changes of the concentration of metabolites implied a rise in oxidative metabolism to a new steady-state level during activation and indicated that amino-acid homeostasis is affected by physiological stimulation, likely because of an increased flux through the malate-aspartate shuttle. © 2007 ISCBFM All rights reserved

    Cortical depth dependent functional responses in humans at 7T: improved specificity with 3D GRASE

    Get PDF
    Ultra high fields (7T and above) allow functional imaging with high contrast-to-noise ratios and improved spatial resolution. This, along with improved hardware and imaging techniques, allow investigating columnar and laminar functional responses. Using gradient-echo (GE) (T2* weighted) based sequences, layer specific responses have been recorded from human (and animal) primary visual areas. However, their increased sensitivity to large surface veins potentially clouds detecting and interpreting layer specific responses. Conversely, spin-echo (SE) (T2 weighted) sequences are less sensitive to large veins and have been used to map cortical columns in humans. T2 weighted 3D GRASE with inner volume selection provides high isotropic resolution over extended volumes, overcoming some of the many technical limitations of conventional 2D SE-EPI, whereby making layer specific investigations feasible. Further, the demonstration of columnar level specificity with 3D GRASE, despite contributions from both stimulated echoes and conventional T2 contrast, has made it an attractive alternative over 2D SE-EPI. Here, we assess the spatial specificity of cortical depth dependent 3D GRASE functional responses in human V1 and hMT by comparing it to GE responses. In doing so we demonstrate that 3D GRASE is less sensitive to contributions from large veins in superficial layers, while showing increased specificity (functional tuning) throughout the cortex compared to GE

    Layer-Specific fMRI Reflects Different Neuronal Computations at Different Depths in Human V1

    Get PDF
    Recent work has established that cerebral blood flow is regulated at a spatial scale that can be resolved by high field fMRI to show cortical columns in humans. While cortical columns represent a cluster of neurons with similar response properties (spanning from the pial surface to the white matter), important information regarding neuronal interactions and computational processes is also contained within a single column, distributed across the six cortical lamina. A basic understanding of underlying neuronal circuitry or computations may be revealed through investigations of the distribution of neural responses at different cortical depths. In this study, we used T2-weighted imaging with 0.7 mm (isotropic) resolution to measure fMRI responses at different depths in the gray matter while human subjects observed images with either recognizable or scrambled (physically impossible) objects. Intact and scrambled images were partially occluded, resulting in clusters of activity distributed across primary visual cortex. A subset of the identified clusters of voxels showed a preference for scrambled objects over intact; in these clusters, the fMRI response in middle layers was stronger during the presentation of scrambled objects than during the presentation of intact objects. A second experiment, using stimuli targeted at either the magnocellular or the parvocellular visual pathway, shows that laminar profiles in response to parvocellular-targeted stimuli peak in more superficial layers. These findings provide new evidence for the differential sensitivity of high-field fMRI to modulations of the neural responses at different cortical depths

    Hardware considerations for preclinical magnetic resonance of the kidney

    Get PDF
    Magnetic resonance imaging (MRI) is a noninvasive imaging technology that offers unparalleled anatomical and functional detail, along with diagnostic sensitivity. MRI is suitable for longitudinal studies due to the lack of exposure to ionizing radiation. Before undertaking preclinical MRI investigations of the kidney, the appropriate MRI hardware should be carefully chosen to balance the competing demands of image quality, spatial resolution, and imaging speed, tailored to the specific scientific objectives of the investigation. Here we describe the equipment needed to perform renal MRI in rodents, with the aim to guide the appropriate hardware selection to meet the needs of renal MRI applications.This publication is based upon work from the COST Action PARENCHIMA, a community-driven network funded by the European Cooperation in Science and Technology (COST) program of the European Union, which aims to improve the reproducibility and standardization of renal MRI biomarkers. This chapter on hardware considerations for renal MRI in small animals is complemented by two separate publications describing the experimental procedure and data analysis

    Accurate post-mortem alignment for Focused Ion Beam and Scanning Electron Microscopy (FIB-SEM) tomography

    No full text
    Drifts in the three directions (X, Y, Z) during the FIB-SEM slice-and-view tomography is an important issue in 3D-FIB experiments which may induce significant inaccuracies in the subsequent volume reconstruction and further quantification of morphological volume parameters of the sample microstructure. Cross-correlation is frequently applied directly to the cross-section image series for aligning FIB sliced images. This solution is hazardous and can be flawed as it has been easily demonstrated by a dedicated test experiment. As a result, a novel aligning procedure based on the quantification of the topography of the sample surface has been developed. This new approach will be compared to the common cross-correlation methods, as well as another approach consisting in using an artificial reference marker fabricated during the FIB procedure. All these methods will then be discussed in terms of accuracy and liability

    Accurate post-mortem alignment for Focused Ion Beam and Scanning Electron Microscopy (FIB-SEM) tomography

    No full text
    fffInternational audienceliste mot clef
    corecore