59 research outputs found

    Reovirus mutant jin-3 exhibits lytic and immune-stimulatory effects in preclinical human prostate cancer models

    Get PDF
    Treatment of castration-resistant prostate cancer remains a challenging clinical problem. Despite the promising effects of immunotherapy in other solid cancers, prostate cancer has remained largely unresponsive. Oncolytic viruses represent a promising therapeutic avenue, as oncolytic virus treatment combines tumour cell lysis with activation of the immune system and mounting of effective anti-tumour responses. Mammalian Orthoreoviruses are non-pathogenic human viruses with a preference of lytic replication in human tumour cells. In this study, we evaluated the oncolytic efficacy of the bioselected oncolytic reovirus mutant jin-3 in multiple human prostate cancer models. The jin-3 reovirus displayed efficient infection, replication, and anti-cancer responses in 2D and 3D prostate cancer models, as well as in ex vivo cultured human tumour slices. In addition, the jin-3 reovirus markedly reduced the viability and growth of human cancer cell lines and patient-derived xenografts. The infection induced the expression of mediators of immunogenic cell death, interferon-stimulated genes, and inflammatory cytokines. Taken together, our data demonstrate that the reovirus mutant jin-3 displays tumour tropism, and induces potent oncolytic and immunomodulatory responses in human prostate cancer models. Therefore, jin-3 reovirus represents an attractive candidate for further development as oncolytic agent for treatment of patients with aggressive localised or advanced prostate cancer.Experimental cancer immunology and therap

    Is HPLC becoming obsolete for bioanalysis?

    No full text

    Metabolism of levormeloxifene, a selective oestrogen receptor modulator, in the Sprague-Dawley rat, Cynomolgus monkey and postmenopausal woman

    No full text
    1. The metabolic fate of levormeloxifene in the Sprague-Dawley rat, Cynomolgus monkey and postmenopausal volunteer has been investigated. 2. Two doses of [14C]levormeloxifene, 0.7 and 50 mg/kg, were given to the male and female rat and monkey, and a single 20-mg dose to the postmenopausal volunteer. 3. The primary route of excretion in all three species was the faeces. Metabolism was similar in all three species, with demethylation forming the major metabolite in the rat and postmenopausal volunteer. One of the major metabolites in the monkey involved an oxidative ring opening of a pyrrole ring. 4. The main site of metabolism of levormeloxifene is the liver and the majority of the drug and its metabolites is excreted via the faecal route. Metabolic pathways appear to be similar in the three species studied

    Mass balance study of [14C] rabeprazole following oral administration in healthy subjects

    No full text
    The study was designed to determine the excretion balance of radiolabeled rabeprazole in urine and feces and to examine the metabolite profile in plasma, urine and feces after a single oral dose of [14C] rabeprazole, preceded by once daily dose of rabeprazole for 7 days. Six healthy subjects were enrolled in this study. The study was a single-center, open-label, multiple-dose, mass-balance study. Each subject received a single 20 mg dose of rabeprazole tablet for 7 days followed by the administration of 20 mg of [14C] rabeprazole as an oral solution after an overnight fast on Day 8. After oral dosing of [14C] rabeprazole, the mean Cmax of total radioactivity was 1,080 +/- 215 ng equivalent/ml with 0.33 +/- 0.13 hours of the mean tmax. The apparent elimination half-life of total [14C] radioactivity was 12.6 +/- 3.4 hours. The total [14C] recovery in urine and feces was 99.8 +/-0.7% by 168 hours after oral administration of [14C] rabeprazole, and mean cumulative [14C] radioactivity excreted in urine was 90.0 +/- 1.7% by 168 hours and 79.8 +/- 2.5% of the radioactivity was excreted in urine within 24 hours. Excretion via feces added to the total by 9.8%. The major radioactive component in the early plasma samples was rabeprazole, however the thioether and thioether carboxylic acid metabolites were the main radioactive components in the later plasma sample. These results support the previous finding that the substantial contribution of the non-enzymatic thioether pathway minimizes the effect of CYP2C19 polymorphism on the inter-individual variation ofplasma clearance of rabeprazole compared with other PPIs. Low levels of the sulfone metabolite were detected only in early plasma samples. No rabeprazole was detected in any urine and feces samples. The main radioactive components in urine were thioether carboxylic acid and mercapturic acid conjugate metabolites, and in the feces, the thioether carboxylic acid metabolite. The administration of [14C] rabeprazole was safe as evidenced by the lack of serious adverse events and the fact that all observed events were mild in intensity. [14C] rabeprazole was rapidly absorbed after oral administration and mostly excreted in urine
    • …
    corecore