26 research outputs found

    Barriers and facilitators perceived by physicians when using prediction models in practice

    Get PDF
    Objectives Prediction models may facilitate risk-based management of health care conditions. In a large cluster-randomized trial, presenting calculated risks of postoperative nausea and vomiting (PONV) to physicians (assistive approach) increased risk-based management of PONV. This increase did not improve patient outcome - that is, PONV incidence. This prompted us to explore how prediction tools guide the decision-making process of physicians. Study Design and Setting Using mixed methods, we interviewed eight physicians to understand how predicted risks were perceived by the physicians and how they influenced decision making. Subsequently, all 57 physicians of the trial were surveyed for how the presented risks influenced their perceptions. Results Although the prediction tool made physicians more aware of PONV prevention, the physicians reported three barriers to use predicted risks in their decision making. PONV was not considered an outcome of utmost importance; decision making on PONV prophylaxis was mostly intuitive rather than risk based; prediction models do not weigh benefits and risks of prophylactic drugs. Conclusion Combining probabilistic output of the model with their clinical experience may be difficult for physicians, especially when their decision-making process is mostly intuitive. Adding recommendations to predicted risks (directive approach) was considered an important step to facilitate the uptake of a prediction tool

    Data_Sheet_1_Definitions of low cardiac output syndrome after cardiac surgery and their effect on the incidence of intraoperative LCOS: A literature review and cohort study.docx

    No full text
    ObjectivesLow cardiac output syndrome (LCOS) is a serious complication after cardiac surgery. Despite scientific interest in LCOS, there is no uniform definition used in current research and clinicians cannot properly compare different study findings. We aimed to collect the LCOS definitions used in literature and subsequently applied the definitions obtained to existing data to estimate their effect on the intraoperative LCOS incidences in adults, children and infants.DesignThis is a literature review, followed by a retrospective cohort study.SettingThis is a single-institutional study from a university hospital in the Netherlands.ParticipantsPatients from all ages undergoing cardiac surgery with cardiopulmonary bypass between June 2011 and August 2018.InterventionsWe obtained different definitions of LCOS used in the literature and applied these to data obtained from an anesthesia information management system to estimate intraoperative incidences of LCOS. We compared intraoperative incidences of LCOS in different populations based on age (infants, children and adults).Measurements and main resultsThe literature search identified 262 LCOS definitions, that were applied to intraoperative data from 7,366 patients. Using the 10 most frequently published LCOS definitions, the obtained incidence estimates ranged from 0.4 to 82% in infants, from 0.6 to 56% in children and from 1.5 to 91% in adults.ConclusionThere is an important variety in definitions used to describe LCOS. When applied to data obtained from clinical care, these different definitions resulted in large distribution of intraoperative LCOS incidence rates. We therefore advocate for standardization of the LCOS definition to improve clinical understanding and enable adequate comparison of outcomes and treatment effects both in daily care and in research.</p

    Incidence of Artifacts and Deviating Values in Research Data Obtained from an Anesthesia Information Management System in Children

    No full text
    BACKGROUND: Vital parameter data collected in anesthesia information management systems are often used for clinical research. The validity of this type of research is dependent on the number of artifacts. METHODS: In this prospective observational cohort study, the incidence of artifacts in anesthesia information management system data was investigated in children undergoing anesthesia for noncardiac procedures. Secondary outcomes included the incidence of artifacts among deviating and nondeviating values, among the anesthesia phases, and among different anesthetic techniques. RESULTS: We included 136 anesthetics representing 10,236 min of anesthesia time. The incidence of artifacts was 0.5% for heart rate (95% CI: 0.4 to 0.7%), 1.3% for oxygen saturation (1.1 to 1.5%), 7.5% for end-tidal carbon dioxide (6.9 to 8.0%), 5.0% for noninvasive blood pressure (4.0 to 6.0%), and 7.3% for invasive blood pressure (5.9 to 8.8%). The incidence of artifacts among deviating values was 3.1% for heart rate (2.1 to 4.4%), 10.8% for oxygen saturation (7.6 to 14.8%), 14.1% for end-tidal carbon dioxide (13.0 to 15.2%), 14.4% for noninvasive blood pressure (10.3 to 19.4%), and 38.4% for invasive blood pressure (30.3 to 47.1%). CONCLUSIONS: Not all values in anesthesia information management systems are valid. The incidence of artifacts stored in the present pediatric anesthesia practice was low for heart rate and oxygen saturation, whereas noninvasive and invasive blood pressure and end-tidal carbon dioxide had higher artifact incidences. Deviating values are more often artifacts than values in a normal range, and artifacts are associated with the phase of anesthesia and anesthetic technique. Development of (automatic) data validation systems or solutions to deal with artifacts in data is warranted

    Déclaration des incidents critiques dans un hôpital de soins tertiaires : une étude de cohorte historique de 110 310 interventions

    No full text
    Purpose: Investigation of adverse events associated with anesthetic procedures is a method of quality control that identifies topics to improve clinical care and patient safety. Most research to date has been based on closed claim registries and anonymous reports which have specific limitations. Therefore, to evaluate a hospital’s reporting system, the present study was designed to describe critical incidents that anesthesiologists voluntarily and non-anonymously reported through an anesthesia information management system. Methods: This is a historical observational cohort study on patients (age > 18 yr) undergoing anesthetic procedures in a tertiary referral hospital. A 20-item list of complications, as developed by the Netherlands Society of Anesthesiologists, was prospectively completed for each procedure. All critical incidents registered in the anesthesia information management system were then reclassified into 95 different critical incidents in a reproducible way. Results: There were 110,310 procedures performed in 65,985 patients, and after excluding 158 reports that did not depict a critical incident, 3,904 critical incidents in 3,807 (3.5%) anesthetic procedures remained. Technical difficulties with regional anesthesia (n = 445; 40 per 10,000 anesthetics; 95% confidence interval [CI], 36 to 44), hypotension (n = 432; 39 per 10,000 anesthetics; 95% CI, 35 to 43), and unexpected difficult intubation (n = 216; 20 per 10,000 anesthetics; 95% CI, 18 to 23) were the most frequently documented critical incidents. Conclusion: Accurate measurement and monitoring of critical incidents is crucial for patient safety. Despite the risk of underreporting and probable misclassification of manual reporting systems, our results give a comprehensive overview on the occurrence of voluntarily reported anesthesia-related critical incidents. This overview can direct development of a new reporting system and preventive strategies to decrease the future occurrence of critical incidents

    Expression Stability of Reference Genes for Quantitative RT-PCR of Healthy and Diseased Pituitary Tissue Samples Varies Between Humans, Mice, and Dogs

    No full text
    Pituitary surgery generates pituitary tissue for histology, immunohistochemistry, and molecular biological research. In the last decade, the pathogenesis of pituitary adenomas has been extensively studied in humans, and to a lesser degree in dogs, and tumor oncogenesis has been studied in knock-out mice, often by means of quantitative reversed-transcriptase PCR (RT-qPCR). A precondition of such analyses is that so-called reference genes are stably expressed regardless of changes in disease status or treatment. In this study, the expression of six frequently used reference genes, namely, tata box binding protein (tbp), tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein, zeta polypeptide (ywhaz), hydroxymethylbilane synthase (hmbs), beta-2-microglobulin (b2m), succinate dehydrogenase complex subunit A (sdha), and glyceraldehyde 3 phosphate dehydrogenase 1 (gapdh), was studied in pituitary tissue (normal and adenoma) from three species (humans, mice, and dogs). The stability of expression of these reference genes differed between species and between healthy and diseased tissue within one species. Quantitative analysis based on a single reference gene that is assumed to be stably expressed might lead to wrong conclusions. This cross-species analysis clearly emphasizes the need to evaluate the expression stability of reference genes as a standard and integral aspect of study design and data analysis, in order to improve the validity of the conclusions drawn on the basis of quantitative molecular analyses

    Précision des technologies de surveillance continue de la fréquence respiratoire à distance destinées aux unités cliniques de basse intensité  : étude observationnelle prospective

    No full text
    Purpose: Altered respiratory rate (RR) has been identified as an important predictor of serious adverse events during hospitalization. Introduction of a well-tolerated continuous RR monitor could potentially reduce serious adverse events such as opioid-induced respiratory depression. The purpose of this study was to investigate the ability of different monitor devices to detect RR in low care clinical settings. Methods: This was a prospective method-comparison study with a cross-sectional design. Thoracic impedance pneumography (IPG), frequency modulated continuous wave radar, and an acoustic breath sounds monitor were compared with the gold standard of capnography for their ability to detect RR in breaths per minute (breaths·min−1) in awake postoperative patients in the postanesthesia care unit. The Bland and Altman method for repeated measurements and mixed effect modelling was used to obtain bias and limits of agreement (LoA). Furthermore, the ability of the three devices to assist with correct treatment decisions was evaluated in Clarke Error Grids. Results: Twenty patients were monitored for 1,203 min, with a median [interquartile range] of 61 [60-63] min per patient. The bias (98.9% LoA) were 0.1 (−7.9 to 7.9) breaths·min−1 for the acoustic monitor, −1.6 (−10.8 to 7.6) for the radar, and −1.9 (−13.1 to 9.2) for the IPG. The extent to which the monitors guided adequate or led to inadequate treatment decisions (determined by Clarke Error Grid analysis) differed significantly between the monitors (P = 0.011). Decisions were correct 96% of the time for acoustic, 95% of the time for radar, and 94% of the time for IPG monitoring devices. Conclusions: None of the studied devices (acoustic, IPG, and radar monitor) had LoA that were within our predefined (based on clinical judgement) limits of ± 2 breaths·min−1. The acoustic breath sound monitor predicted the correct treatment more often than the IPG and the radar device

    Association between intraoperative hypotension and myocardial injury after vascular surgery

    No full text
    Background: Postoperative myocardial injury occurs frequently after noncardiac surgery and is strongly associated with mortality. Intraoperative hypotension (IOH) is hypothesized to be a possible cause. The aim of this study was to determine the association between IOH and postoperative myocardial injury. Methods: This cohort study included 890 consecutive patients aged 60 yr or older undergoing vascular surgery from two university centers. The occurrence of myocardial injury was assessed by troponin measurements as part of a postoperative care protocol. IOH was defined by four different thresholds using either relative or absolute values of the mean arterial blood pressure based on previous studies. Either invasive or noninvasive blood pressure measurements were used. Poisson regression analysis was used to determine the association between IOH and postoperative myocardial injury, adjusted for potential clinical confounders and multiple comparisons. Results: Depending on the definition used, IOH occurred in 12 to 81% of the patients. Postoperative myocardial injury occurred in 131 (29%) patients with IOH as defined by a mean arterial pressure less than 60 mmHg, compared with 87 (20%) patients without IOH (P = 0.001). After adjustment for potential confounding factors including mean heart rates, a 40% decrease from the preinduction mean arterial blood pressure with a cumulative duration of more than 30 min was associated with postoperative myocardial injury (relative risk, 1.8; 99% CI, 1.2 to 2.6, P < 0.001). Shorter cumulative durations (less than 30 min) were not associated with myocardial injury. Postoperative myocardial infarction and death within 30 days occurred in 26 (6%) and 17 (4%) patients with IOH as defined by a mean arterial pressure less than 60 mmHg, compared with 12 (3%; P = 0.08) and 15 (3%; P = 0.77) patients without IOH, respectively. Conclusions: In elderly vascular surgery patients, IOH defined as a 40% decrease from the preinduction mean arterial blood pressure with a cumulative duration of more than 30 min was associated with postoperative myocardial injury

    Précision des technologies de surveillance continue de la fréquence respiratoire à distance destinées aux unités cliniques de basse intensité  : étude observationnelle prospective

    No full text
    Purpose: Altered respiratory rate (RR) has been identified as an important predictor of serious adverse events during hospitalization. Introduction of a well-tolerated continuous RR monitor could potentially reduce serious adverse events such as opioid-induced respiratory depression. The purpose of this study was to investigate the ability of different monitor devices to detect RR in low care clinical settings. Methods: This was a prospective method-comparison study with a cross-sectional design. Thoracic impedance pneumography (IPG), frequency modulated continuous wave radar, and an acoustic breath sounds monitor were compared with the gold standard of capnography for their ability to detect RR in breaths per minute (breaths·min−1) in awake postoperative patients in the postanesthesia care unit. The Bland and Altman method for repeated measurements and mixed effect modelling was used to obtain bias and limits of agreement (LoA). Furthermore, the ability of the three devices to assist with correct treatment decisions was evaluated in Clarke Error Grids. Results: Twenty patients were monitored for 1,203 min, with a median [interquartile range] of 61 [60-63] min per patient. The bias (98.9% LoA) were 0.1 (−7.9 to 7.9) breaths·min−1 for the acoustic monitor, −1.6 (−10.8 to 7.6) for the radar, and −1.9 (−13.1 to 9.2) for the IPG. The extent to which the monitors guided adequate or led to inadequate treatment decisions (determined by Clarke Error Grid analysis) differed significantly between the monitors (P = 0.011). Decisions were correct 96% of the time for acoustic, 95% of the time for radar, and 94% of the time for IPG monitoring devices. Conclusions: None of the studied devices (acoustic, IPG, and radar monitor) had LoA that were within our predefined (based on clinical judgement) limits of ± 2 breaths·min−1. The acoustic breath sound monitor predicted the correct treatment more often than the IPG and the radar device
    corecore