24 research outputs found

    Potential impacts of prolonged absence of influenza virus circulation on subsequent epidemics

    Get PDF
    BACKGROUND: During the first two years of the COVID-19 pandemic, the circulation of seasonal influenza viruses was unprecedentedly low. This led to concerns that the lack of immune stimulation to influenza viruses combined with waning antibody titres could lead to increased susceptibility to influenza in subsequent seasons, resulting in larger and more severe epidemics. METHODS: We analyzed historical influenza virus epidemiological data from 2003-2019 to assess the historical frequency of near-absence of seasonal influenza virus circulation and its impact on the size and severity of subsequent epidemics. Additionally, we measured haemagglutination inhibition-based antibody titres against seasonal influenza viruses using longitudinal serum samples from 165 healthy adults, collected before and during the COVID-19 pandemic, and estimated how antibody titres against seasonal influenza waned during the first two years of the pandemic. FINDINGS: Low country-level prevalence of influenza virus (sub)types over one or more years occurred frequently before the COVID-19 pandemic and had relatively small impacts on subsequent epidemic size and severity. Additionally, antibody titres against seasonal influenza viruses waned negligibly during the first two years of the pandemic. INTERPRETATION: The commonly held notion that lulls in influenza virus circulation, as observed during the COVID-19 pandemic, will lead to larger and/or more severe subsequent epidemics might not be fully warranted, and it is likely that post-lull seasons will be similar in size and severity to pre-lull seasons. FUNDING: European Research Council, Netherlands Organization for Scientific Research, Royal Dutch Academy of Sciences, Public Health Service of Amsterdam. RESEARCH IN CONTEXT: Evidence before this study: During the first years of the COVID-19 pandemic, the incidence of seasonal influenza was unusually low, leading to widespread concerns of exceptionally large and/or severe influenza epidemics in the coming years. We searched PubMed and Google Scholar using a combination of search terms (i.e., "seasonal influenza", "SARS-CoV-2", "COVID-19", "low incidence", "waning rates", "immune protection") and critically considered published articles and preprints that studied or reviewed the low incidence of seasonal influenza viruses since the start of the COVID-19 pandemic and its potential impact on future seasonal influenza epidemics. We found a substantial body of work describing how influenza virus circulation was reduced during the COVID-19 pandemic, and a number of studies projecting the size of future epidemics, each positing that post-pandemic epidemics are likely to be larger than those observed pre-pandemic. However, it remains unclear to what extent the assumed relationship between accumulated susceptibility and subsequent epidemic size holds, and it remains unknown to what extent antibody levels have waned during the COVID-19 pandemic. Both are potentially crucial for accurate prediction of post-pandemic epidemic sizes.Added value of this study: We find that the relationship between epidemic size and severity and the magnitude of circulation in the preceding season(s) is decidedly more complex than assumed, with the magnitude of influenza circulation in preceding seasons having only limited effects on subsequent epidemic size and severity. Rather, epidemic size and severity are dominated by season-specific effects unrelated to the magnitude of circulation in the preceding season(s). Similarly, we find that antibody levels waned only modestly during the COVID-19 pandemic.Implications of all the available evidence: The lack of changes observed in the patterns of measured antibody titres against seasonal influenza viruses in adults and nearly two decades of epidemiological data suggest that post-pandemic epidemic sizes will likely be similar to those observed pre-pandemic, and challenge the commonly held notion that the widespread concern that the near-absence of seasonal influenza virus circulation during the COVID-19 pandemic, or potential future lulls, are likely to result in larger influenza epidemics in subsequent years

    Displacement and Resettlement: Understanding the Role of Climate Change in Contemporary Migration

    Get PDF
    How do we understand displacement and resettlement in the context of climate change? This chapter outlines challenges and debates in the literature connecting climate change to the growing global flow of people. We begin with an outline of the literature on environmental migration, specifically the definitions, measurements, and forms of environmental migration. The discussion then moves to challenges in the reception of migrants, treating the current scholarship on migrant resettlement. We detail a selection of cases in which the environment plays a role in the displacement of a population, including sea level rise in Pacific Island States, cyclonic storms in Bangladesh, and desertification in West Africa, as well as the role of deforestation in South America’s Southern Cone as a driver of both climate change and migration. We outline examples of each, highlighting the complex set of losses and damages incurred by populations in each case

    Folding-function relationship of the most common cystic fibrosis-causing CFTR conductance mutants

    No full text
    Cystic fibrosis is caused by mutations in the CFTR gene, which are subdivided into six classes. Mutants of classes III and IV reach the cell surface but have limited function. Most class-III and class-IV mutants respond well to the recently approved potentiator VX-770, which opens the channel. We here revisited function and folding of some class-IV mutants and discovered that R347P is the only one that leads to major defects in folding. By this criterion and by its functional response to corrector drug VX-809, R347P qualifies also as a class-II mutation. Other class-IV mutants folded like wild-type CFTR and responded similarly to VX-809, demonstrating how function and folding are connected. Studies on both types of defects complement each other in understanding how compounds improve mutant CFTR function. This provides an attractive unbiased approach for characterizing mode of action of novel therapeutic compounds and helps address which drugs are efficacious for each cystic fibrosis disease variant

    Folding-function relationship of the most common cystic fibrosis-causing CFTR conductance mutants

    No full text
    Cystic fibrosis is caused by mutations in the CFTR gene, which are subdivided into six classes. Mutants of classes III and IV reach the cell surface but have limited function. Most class-III and class-IV mutants respond well to the recently approved potentiator VX-770, which opens the channel. We here revisited function and folding of some class-IV mutants and discovered that R347P is the only one that leads to major defects in folding. By this criterion and by its functional response to corrector drug VX-809, R347P qualifies also as a class-II mutation. Other class-IV mutants folded like wild-type CFTR and responded similarly to VX-809, demonstrating how function and folding are connected. Studies on both types of defects complement each other in understanding how compounds improve mutant CFTR function. This provides an attractive unbiased approach for characterizing mode of action of novel therapeutic compounds and helps address which drugs are efficacious for each cystic fibrosis disease variant

    The effect of SARS-CoV-2 vaccination on post-acute sequelae of COVID-19 (PASC): A prospective cohort study

    No full text
    Background: Symptoms of post-acute sequelae of COVID-19 (PASC) may improve following SARS-CoV-2 vaccination. However few prospective data that also explore the underlying biological mechanism are available. We assessed the effect of vaccination on symptomatology of participants with PASC, and compared antibody dynamics between those with and without PASC. Methods: RECoVERED is a prospective cohort study of adult patients with mild to critical COVID-19, enrolled from illness onset. Among participants with PASC, vaccinated participants were exact-matched 1:1 on age, sex, obesity status and time since illness onset to unvaccinated participants. Between matched pairs, we compared the monthly mean numbers of symptoms over a 3-month follow-up period, and, using exact logistic regression, the proportion of participants who fully recovered from PASC. Finally, we assessed the association between PACS status and rate of decay of spike- and RBD-binding IgG titers up to 9 months after illness onset using Bayesian hierarchical linear regression. Findings: Of 349 enrolled participants, 316 (90.5%) had ≥3 months of follow-up, of whom 186 (58.9%) developed PASC. Among 36 matched pairs with PASC, the mean number of symptoms reported each month during 3 months of follow-up were comparable between vaccinated and unvaccinated groups. Odds of full recovery from PASC also did not differ between matched pairs (OR 1.57 [95%CI 0.46–5.84]) within 3 months after the matched time-point. The median half-life of spike- and RBD-binding IgG levels were, in days (95%CrI), 233 (183–324) and 181 (147–230) among participants with PASC, and 170 (125–252) and 144 (113–196) among those without PASC, respectively. Interpretation: Our study found no strong evidence to suggest that vaccination improves symptoms of PASC. This was corroborated by comparable spike- and RBD-binding IgG waning trajectories between those with and without PASC, refuting any immunological basis for a therapeutic effect of vaccination on PASC

    Evolution of Coronavirus Disease 2019 (COVID-19) Symptoms During the First 12 Months After Illness Onset

    No full text
    BACKGROUND: Few robust longitudinal data on long-term coronavirus disease 2019 (COVID-19) symptoms are available. We evaluated symptom onset, severity and recovery across the full spectrum of disease severity, up to one year after illness onset. METHODS: The RECoVERED Study is a prospective cohort study based in Amsterdam, the Netherlands. Participants aged ≥18 years were enrolled following severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) diagnosis via the local public health service and from hospitals. Standardized symptom questionnaires were completed at enrollment, 1 week and month later, and monthly thereafter. Clinical severity was defined according to World Health Organization (WHO) criteria. Kaplan-Meier methods were used to compare time from illness onset to symptom recovery, by clinical severity. We examined determinants of time to recovery using multivariable Cox proportional hazards models. RESULTS: Between 11 May 2020 and 1 May 2021, 342 COVID-19 patients (192 [56%] male) were enrolled, of whom 99/342 (29%) had mild, 145/342 (42%) moderate, 56/342 (16%) severe, and 42/342 (12%) critical disease. The proportion of participants who reported at least 1 persistent symptom at 12 weeks after illness onset was greater in those with severe/critical disease (86.7% [95% confidence interval {CI} = 76.5-92.7%]) compared to those with mild or moderate disease (30.7% [95% CI = 21.1-40.9%] and 63.8% [95% CI = 54.8-71.5%], respectively). At 12 months after illness onset, two-fifths of participants (40.7% [95% CI = 34.2-7.1]) continued to report ≥1 symptom. Recovery was slower in female compared to male participants (adjusted hazard ratio [aHR] 0.65 [95% CI = .47-.92]) and those with a body mass index [BMI]  ≥30kg/m2 compared to BMI <25kg/m2 (hazard ratio [HR] 0.62 [95% CI = .39-.97]). CONCLUSIONS: COVID-19 symptoms persisted for one year after illness onset, even in some individuals with mild disease. Female sex and obesity were the most important determinants of speed of recovery from symptoms

    One-fourth of COVID-19 patients have an impaired pulmonary function after 12 months of disease onset.

    No full text
    BackgroundThere is increasing data that show a persistently impaired pulmonary function upon recovery after severe infection. Little is known however about the extent, recovery and determinants of pulmonary impairment across the full spectrum of COVID-19 severity over time.MethodsIn a well characterized, prospective cohort of both hospitalised and non-hospitalised individuals with SARS-CoV-2 infection, the RECoVERED study, pulmonary function (diffusing capacity for carbon monoxide (DLCO)) and spirometry) was measured until one year after disease onset. Additionally, data on sociodemographics, clinical characteristics, symptoms, and health-related quality of life (HRQL) were collected. Pulmonary function and these determinants were modelled over time using mixed-effect linear regression. Determinants of pulmonary function impairment at 12 months after disease onset were identified using logistic regression.FindingsBetween May 2020 and December 2021, 301 of 349 participants underwent at least one pulmonary function test. After one year of follow-up, 25% of the participants had an impaired pulmonary function which translates in 11%, 22%, and 48% of the participants with mild, moderate and severe/critical COVID-19. Improvement in DLCO among the participants continued over the period across one, six and twelve months. Being older, having more than three comorbidities (pInterpretationThe prevalence of impaired pulmonary function after twelve months of follow-up, was still significant among those with initially moderate or severe/critical COVID-19. Pulmonary function increased over time in most of the severity groups. These data imply that guidelines regarding revalidation after COVID-19 should target individuals with moderate and severe/critical disease severities

    Optimal Dosing and Timing of High-Dose Corticosteroid Therapy in Hospitalized Patients With COVID-19: Study Protocol for a Retrospective Observational Multicenter Study (SELECT)

    Get PDF
    Background: In hospitalized patients with COVID-19, the dosing and timing of corticosteroids vary widely. Low-dose dexamethasone therapy reduces mortality in patients requiring respiratory support, but it remains unclear how to treat patients when this therapy fails. In critically ill patients, high-dose corticosteroids are often administered as salvage late in the disease course, whereas earlier administration may be more beneficial in preventing disease progression. Previous research has revealed that increased levels of various biomarkers are associated with mortality, and whole blood transcriptome sequencing has the ability to identify host factors predisposing to critical illness in patients with COVID-19. Objective: Our goal is to determine the most optimal dosing and timing of corticosteroid therapy and to provide a basis for personalized corticosteroid treatment regimens to reduce morbidity and mortality in hospitalized patients with COVID-19. Methods: This is a retrospective, observational, multicenter study that includes adult patients who were hospitalized due to COVID-19 in the Netherlands. We will use the differences in therapeutic strategies between hospitals (per protocol high-dose corticosteroids or not) over time to determine whether high-dose corticosteroids have an effect on the following outcome measures: mechanical ventilation or high-flow nasal cannula therapy, in-hospital mortality, and 28-day survival. We will also explore biomarker profiles in serum and bronchoalveolar lavage fluid and use whole blood transcriptome analysis to determine factors that influence the relationship between high-dose corticosteroids and outcome. Existing databases that contain routinely collected electronic data during ward and intensive care admissions, as well as existing biobanks, will be used. We will apply longitudinal modeling appropriate for each data structure to answer the research questions at hand. Results: As of April 2023, data have been collected for a total of 1500 patients, with data collection anticipated to be completed by December 2023. We expect the first results to be available in early 2024. Conclusions: This study protocol presents a strategy to investigate the effect of high-dose corticosteroids throughout the entire clinical course of hospitalized patients with COVID-19, from hospital admission to the ward or intensive care unit until hospital discharge. Moreover, our exploration of biomarker and gene expression profiles for targeted corticosteroid therapy represents a first step towards personalized COVID-19 corticosteroid treatment
    corecore