5 research outputs found

    The Effects of A21G Mutation on Transmembrane Amyloid Beta (11–40) Trimer: An <i>In Silico</i> Study

    No full text
    Familial Alzheimer’s disease (FAD) is passed down in family, which account for 2–3% of about 40 million AD cases worldwide. The Flemish (A21G) mutant of amyloid β (Aβ) exhibits unique properties among all hereditary mutants of FAD, including the lowest aggregation rate. Recent studies showed that Aβ oligomers play a key role in Alzheimer’s disease (AD) pathogenesis. They could insert themselves in brain cell membrane, disrupting the membrane integrity and ion homeostasis. However, experimental studies of transmembrane Aβ oligomers have been limited due to their intrinsic heterogeneity. In this work, we extensively studied the A21G mutant of the transmembrane 3Aβ<sub>11–40</sub> (A21G 3Aβ<sub>11–40</sub>) using temperature replica exchange molecular dynamics (REMD) simulations. Results provide detailed information on the conformational distribution and dynamics of transmembrane A21G 3Aβ<sub>11–40</sub>. Minimal local change from A to G leads to significant conformational changes and wider free energy holes on the free energy surface as well as altered surface charges that lead to weaker affinity to the dipalmitoylphosphatidylcholine (DPPC) lipid bilayers. These results are consistent with experimental data that showed that A21G mutants of Aβ peptides have lower aggregation rates and membrane binding rates

    Determinants of Regioselective Hydroxylation in the Fungal Polysaccharide Monooxygenases

    No full text
    The ubiquitous fungal poly­saccharide mono­oxy­genases (PMOs) (also known as GH61 proteins, LPMOs, and AA9 proteins) are structurally related but have significant variation in sequence. A heterologous expression method in <i>Neurospora crassa</i> was developed as a step toward connecting regioselectivity of the chemistry to PMO phylogeny. Activity assays, as well as sequence and phylogenetic analyses, showed that the majority of fungal PMOs fall into three major groups with distinctive active site surface features. PMO1s and PMO2s hydroxylate glycosidic positions C1 and C4, respectively. PMO3s hydroxylate both C1 and C4. A subgroup of PMO3s (PMO3*) hydroxylate C1. Mutagenesis studies showed that an extra subdomain of about 12 amino acids contribute to C4 oxidation in the PMO3 family

    An Unusual Peroxo Intermediate of the Arylamine Oxygenase of the Chloramphenicol Biosynthetic Pathway

    No full text
    Streptomyces venezuelae CmlI catalyzes the six-electron oxygenation of the arylamine precursor of chloramphenicol in a nonribosomal peptide synthetase (NRPS)-based pathway to yield the nitroaryl group of the antibiotic. Optical, EPR, and Mössbauer studies show that the enzyme contains a nonheme dinuclear iron cluster. Addition of O<sub>2</sub> to the diferrous state of the cluster results in an exceptionally long-lived intermediate (<i>t</i><sub>1/2</sub> = 3 h at 4 °C) that is assigned as a peroxodiferric species (CmlI-peroxo) based upon the observation of an <sup>18</sup>O<sub>2</sub>-sensitive resonance Raman (rR) vibration. CmlI-peroxo is spectroscopically distinct from the well characterized and commonly observed <i>cis</i>-μ-1,2-peroxo (μ-η<sup>1</sup>:η<sup>1</sup>) intermediates of nonheme diiron enzymes. Specifically, it exhibits a blue-shifted broad absorption band around 500 nm and a rR spectrum with a ν­(O–O) that is at least 60 cm<sup>–1</sup> lower in energy. Mössbauer studies of the peroxo state reveal a diferric cluster having iron sites with small quadrupole splittings and distinct isomer shifts (0.54 and 0.62 mm/s). Taken together, the spectroscopic comparisons clearly indicate that CmlI-peroxo does not have a μ-η<sup>1</sup>:η<sup>1</sup>-peroxo ligand; we propose that a μ-η<sup>1</sup>:η<sup>2</sup>-peroxo ligand accounts for its distinct spectroscopic properties. CmlI-peroxo reacts with a range of arylamine substrates by an apparent second-order process, indicating that CmlI-peroxo is the reactive species of the catalytic cycle. Efficient production of chloramphenicol from the free arylamine precursor suggests that CmlI catalyzes the ultimate step in the biosynthetic pathway and that the precursor is not bound to the NRPS during this step

    Distal Hydrophobic Loop Modulates the Copper Active Site and Reaction of AA13 Polysaccharide Monooxygenases

    No full text
    Polysaccharide monooxygenases (PMOs) use a type-2 copper center to activate O2 for the selective hydroxylation of one of the two C–H bonds of glycosidic linkages. Our electron paramagnetic resonance (EPR) analysis and molecular dynamics (MD) simulations suggest the unprecedented dynamic roles of the loop containing the residue G89 (G89 loop) on the active site structure and reaction cycle of starch-active PMOs (AA13 PMOs). In the Cu(II) state, the G89 loop could switch between an “open” and “closed” conformation, which is associated with the binding and dissociation of an aqueous ligand in the distal site, respectively. The conformation of the G89 loop influences the positioning of the copper center on the preferred substrate of AA13 PMOs. The dissociation of the distal ligand results in the bending of the T-shaped core of the Cu(II) active site, which could help facilitate its reduction to the active Cu(I) state. In the Cu(I) state, the G89 loop is in the “closed” conformation with a confined copper center, which could allow for efficient O2 binding. In addition, the G89 loop remains in the “closed” conformation in the Cu(II)-superoxo intermediate, which could prevent off-pathway superoxide release via exchange with the distal aqueous ligand. Finally, at the end of the reaction cycle, aqueous ligand binding to the distal site could switch the G89 loop to the “open” conformation and facilitate product release

    Distal Hydrophobic Loop Modulates the Copper Active Site and Reaction of AA13 Polysaccharide Monooxygenases

    No full text
    Polysaccharide monooxygenases (PMOs) use a type-2 copper center to activate O2 for the selective hydroxylation of one of the two C–H bonds of glycosidic linkages. Our electron paramagnetic resonance (EPR) analysis and molecular dynamics (MD) simulations suggest the unprecedented dynamic roles of the loop containing the residue G89 (G89 loop) on the active site structure and reaction cycle of starch-active PMOs (AA13 PMOs). In the Cu(II) state, the G89 loop could switch between an “open” and “closed” conformation, which is associated with the binding and dissociation of an aqueous ligand in the distal site, respectively. The conformation of the G89 loop influences the positioning of the copper center on the preferred substrate of AA13 PMOs. The dissociation of the distal ligand results in the bending of the T-shaped core of the Cu(II) active site, which could help facilitate its reduction to the active Cu(I) state. In the Cu(I) state, the G89 loop is in the “closed” conformation with a confined copper center, which could allow for efficient O2 binding. In addition, the G89 loop remains in the “closed” conformation in the Cu(II)-superoxo intermediate, which could prevent off-pathway superoxide release via exchange with the distal aqueous ligand. Finally, at the end of the reaction cycle, aqueous ligand binding to the distal site could switch the G89 loop to the “open” conformation and facilitate product release
    corecore