69 research outputs found
Recommended from our members
Lagrangian flow structures in 3D AC electro-osmotic microflows
This paper was presented at the 3rd Micro and Nano Flows Conference (MNF2011), which was held at the Makedonia Palace Hotel, Thessaloniki in Greece. The conference was organised by Brunel University and supported by the Italian Union of Thermofluiddynamics, Aristotle University of Thessaloniki, University of Thessaly, IPEM, the Process Intensification Network, the Institution of Mechanical Engineers, the Heat Transfer Society, HEXAG - the Heat Exchange Action Group, and the Energy Institute.Flow forcing by AC electro-osmosis (ACEO) is a promising technique for actuation and
manipulation of microflows. Utilisation to date mainly concerns pumping and mixing. However, emerging micro-fluidics applications demand further functionalities. The present study explores first ways by which to systematically realise this in three-dimensional (3D) microflows using ACEO. This exploits the fact that continuity âorganisesâ Lagrangian fluid trajectories into coherent structures that geometrically determine the transport properties. 3D Lagrangian flow structures typically comprise families of concentric (closed) streamtubes, acting both as transport barriers and transport conduits, embedded in chaotic regions. Representative case studies demonstrate that ACEO, possibly in combination with other forcing mechanisms, has the potential to tailor these features into multi-functional Lagrangian flow structures for various transport purposes. This may pave the way to âlabs-within-a-channelâ that offer the wide functionality of labs-on-a-chip yet within one microflow instead of within an integrated system
Aortic root dimension changes during systole and diastole: evaluation with ECG-gated multidetector row computed tomography
Cardiac pulsatility and aortic compliance may result in aortic area and diameter changes throughout the cardiac cycle in the entire aorta. Until this moment these dynamic changes could never be established in the aortic root (aortic annulus, sinuses of Valsalva and sinotubular junction). The aim of this study was to visualize and characterize the changes in aortic root dimensions during systole and diastole with ECG-gated multidetector row computed tomography (MDCT). MDCT scans of subjects without aortic root disease were analyzed. Retrospectively, ECG-gated reconstructions at each 10% of the cardiac cycle were made and analyzed during systole (30â40%) and diastole (70â75%). Axial planes were reconstructed at three different levels of the aortic root. At each level the maximal and its perpendicular luminal dimension were measured. The mean dimensions of the total study group (n = 108, mean age 56 ± 13 years) do not show any significant difference between systole and diastole. The individual dimensions vary up to 5 mm. However, the differences range between minus 5 mm (diastolic dimension is greater than systolic dimensions) and 5 mm (vice versa). This variability is independent of gender, age, height and weight. This study demonstrated a significant individual dynamic change in the dimensions of the aortic root. These results are highly unpredictable. Most of the healthy subjects have larger systolic dimensions, however, some do have larger diastolic dimensions
Dynamical analysis of electrochemical wall shear rate measurements
The performance of a circular electrochemical wall shear rate probe under unsteady flow conditions is analysed through a combined ezxperimental, numerical and analytical approach. The experiments are performed with a ferri- and ferrocyanide redox couple and compared to finite element analysis of the two-dimensional time-dependent convection-diffusion equation. The results are related to the analytical Leveque solution for steady flow and for some cases to Pedley's model for heat transfer in reversing shear flow (Pedley 1976).
The steady flow analyses showed that in our experiments axial diffusion is only of minor importance but that for the lower Peclet numbers
- âŠ