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Voorwoord 

Dit rapport biedt een overzicht van de experimentele en analytische werk- 
zaamheden zoals die in het afgelopen jaar door beide auteurs aan de zoge- 
naamde klepcluitingsopstelling zijn uitgevoerd. Het is de bedoeling dit te 
zijner tijd tot publicatie te brengen, doch voor die tijd is behoefte aan 
reactie en discussie. Vandaar deze op een aantal punten, zoals o.a. doorwer- 
king buiswand eigenschappen, nog incomplete versie. 
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Summa r Y 

Model experiments are performed in a long thin-walled fluid-filled visco- 
elastic tube in which the fluid is suddenly slowed down starting from a 
steady flow. The resulting jump in pressure is determined as a function of 
initial flow velocity, position in the tube and for different wall inhomoge- 
neities. The observed phenomena are analysed using one-dimensional models of 
wave propagation and separately the influence of non-linearities, fluid vis- 
cosity, visco-elastic wall properties and wave reflections are discussed. 
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Introduction 

The study of non-linear wave propagation in liquid-filled visco-elastic 
tubes is often motivated by its application to the arterial blood flow. It 
is known from both static and dynamic measurements (Bergel 1961, Milnor 
1982) that the walls of the large blood vessels exhibit non-linear elastic 
and viscous properties. The analysis of the resulting blood flow and pres- 
sure pulse wave forms at various locations in the arterial tree has been the 
subject of many investigations. Most often the approach was of a mathemati- 
cal nature. Contributions have been given, among others by Euler (17751, 
Young (1808) and Lambossy (1950). For physiological applications the analy- 
sis of Womersley (1957) appeared to be important. He solved the linearised 
Navier-Stokes equations under assumption of small elastic deformations of 
the vessel wall. Later this analysis was extended by others to include the 
effects o f  initial stresses, perivascular tethering and visco-elastic beha- 
viour of the arterial wall (Cox 1968). Also the influence of the non-linear 
convective acceleration terms of the Navier-Stokes equation and the geome- 
tric and elastic non-linear properties of the vessel wall have been investi- 
gated (Olson and Shapiro 1967, Ling and Atabek 1 9 7 2 ) .  The physiological re- 
levance of the latter analysis is that due to the strongly non-linear elas- 
tic behaviour of the vessel wall steepening of the wave front and conse- 
quently shock-like discontinuities are expected (Rudinger 1970, Pedley 1980 
and Cowley 1982). A rather general but linear model of wave propagation in 
orthotropic tubes hac recently been given by Kuiken (1984). In all these mo- 
dels the visco-elasticity of the vessel walls and blood has been neglected 
or oversimplified. However, as indicated by Anliker (1978) and analysed by 
Holenstein et al. (1980, 1984), the complete visco-elastic damping proper- 
ties of arteries and blood cells need to be included in order to obtain ac- 
curate theoretical results valuable over large distances in the arterial 
tree. 

Most of the previously mentioned mathematical models o f  arterial pulse 
propagation have been compared to in-vivo data, which is quite difficult in 
view of the many assumptions made in each model. Only little data is avail- 
able from well-defined model experiments. An outline of such experiments was 
given by Kivity and Collins 11974) in order to determine the visco-elastic 
properties of large blood vessels. This method is based upon measurements of  

the axial distribution of either cross-sectional area or internal pr, -ssure 
during the passage of a 'shock" wave in the vessel. Collins et al. (1976) 
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have applied the proposed analysis to experimentally produced pressure jumps 
in silastic tubes and used their observations to infer the visco-elastic 
properties of the tube. But, as stated by Pedley (1980), their results have 
t o  be examined with caution due t o  the assumed oversimplified model of the 
visco-elastic material properties. 

Odou et al. (1979) reported about experiments in a visco-elastic rubber 
test section of a hydromechanical model. In this set-up waves were produced 
by rapid electrically driven piston motion and the change in tube diameter 
has been measured optically at various sites along its length during the 
passage of the wave front. However, only some introductory results were gi- 
ven. 

Apart of the model studies described sofar, numerous attempts have been 
undertaken to investigate the properties of collapsing tubes. Extensive stu- 
dies have been performed for example by Shapiro (1977) and Kamm and Shapiro 
(1979). In this case the cross-sectional area of the tube becomes highly 
non-circular and the non-linear elastic properties then completely dominate 
the observed phenomena. In the present study the internal pressure suffi- 
ciently exceeds the outer one to prevent the tube to collaps and hence these 
studies remain out of scope here. Finally, for an overview of the phenomena 
of wave propagation and a summary of in-vivo data, both concerning the cir- 
culatory system, we refer to Wetterer and Xenner ( i 9 6 8 1 ,  Eightnifi (4975) , 
Pedley (19801, Milnor (1982) and Fung (1984). 

In the present paper, model experiments are described of wave phenomena 
in a long uniform non-linear visco-elastic tube of well known material pro- 
perties. The wave phenomena are analysed using one-dimensional models of 
wave propagation and separately the influence of non-linearities, fluid vis- 
cosity and wave reflections are discussed. Also a first but uncomplete at- 
tempt to describe the influence of the viscous wall properties is presented. 
The physiological relevance of this study is, apart from gaining more in- 
sight into wave propagation in the arterial system, more specifically the 
understanding of the phenomena that occur just after aortic valve closure. 
In previous studies we performed model and animal studies on the closing be- 
haviour of this valve (van Steenhoven and van Dongen 1979, van Steenhoven et 
al. 1981/1982). The animal experiments confirmed the model findings of Bell- 
house and Talbot (1969) that during deceleration of the liquid in the aorta 
the cross-sectional area of the valve orifice reduces about 75% and that on- 
ly a small reversed flow is then sufficient to complete the closure. In the 
model studies we demonstrated that this gradual valve closure during flow 
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deceleration can mainly be described from the positive pressure gradient in 
axial direction. Furthermore, it was found that a small cavity behind the 
leaflets i s  essential for this early valve closure. Besides, in case the na- 
tural sinus cavities do not optimally fit to the valve leaflets, for example 
when a bioprosthesis is used, the necessary back flow to complete the clo- 
sure increases considerably (van Steenhoven et al. 1982).  However, the 
backflow to complete the closure needs to be suddenly slowed down by the 
closed valve, which causes a rise in the aortic pressure known as the dicro- 
tic notch. From the tissues surrounding the valve Cauren et al (1983) demon- 
strated that the leaflet are much stiffer than the aortic wall. The latter 
on its turn differs slightly in elasticity 'from the sinus walls. Besides, 
all these tissues showed remarkable visco-elastic material properties. it is 
the ultimate goal of this study to determine the parameters which govern the 
pressure rise just after valve closure, as well as its magnitude and slope 
close to the valve as its propagation through the aorta. As a first step, in 
the present model study sudden valve closure is simulated starting from a 
steady initial flow and the resulting pressure rise is studied in relation 
to the wall material properties, the initial volume flow values, the dis- 
tance to the valve and a negative or positive reflection coefficient at a 
distinct point (like the sinus-aorta connection) in the tube. First the ex- 
perimental set-up, the wall material pro.perties and some qualitati$e experi-  

mental observations are presented. Next some physical models based on one- 
dimensional wave propagation in elastic tubes are treated. Finally, a quan- 
titative comparison of theoretical predictions with experimental data will 
take place. 

I 
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Qualitative experimental observations 

The experimental set-up ....................... 
Basically, the realized set-up consists of a latex tube (Penrose Drain, 

- 4  length 2 0,6 m., internal diameter 2 1 . 8  m., wall thickness 2 2 10 
m. ) fixed between two reservoirs, see figure la. The fluid used is water. 
Constant fluid velocities between 0.1 and 0.5 ms can be achieved by varying 
the constant pressure difference between the reservoirs. The tube is preven- 
ted to collaps through a transmural pressure of about 3 kPa adjusted by the 
fluid height in the reservoirs. On x = O the diameter of the latex tube is 
locally 20% reduced. From the left reservoir a metal tube (outer diameter = 

8 

located at the constriction C, see figure lb. From this tip towards the 
right reservoir four nylon threads (diameter = 5 m.> are stretched. 
Over this tube a washerlike occluder (outer diameter = 16 m., internal 
diameter = 6.5 m. I specific weight = 10 kgfm 1 can be taken along by 
the flow on the moment that the occìuder is placed in the flow. A step-like 
reduction of the volume flow to zero is achieved on the moment that the oc- 
cluder contacts both the constriction of the latex tube and the tip of the 
previously mentioned metal tube (closing time 2 15 s ) .  

m.) i s  aligned along the axis o f  the latex tube, the tip o f  it being 

3 3 

The time and place dependent variation in pressure was measured locally 
at the axis of the tube with a catheter-tip manometer (Millar PC 470) which 
is positioned through the metal tube as shown in figure 1 .  To determine the 
wave front distortion two catheter-tip manometers were used simultaneously, 
one close to the constriction and the other, analogously inserted at the 
right-hand side, at a distance of  a multiple of 5 m. from the former. 
To measure the wall. deflection during the pressure jump a photonic sensor 
(MITI KD-100) was used placed about 1 mm. above the tube itself. The value of 
volume flow was measured electromagnetically (Transflow 601) at the inflow 
side of the right reservoir. All electrical signals were recorded on an 
electromagnetic tape recorder (Hewlet-Packard 3968 A )  and the pressure and 
wall deflection signals were analysed using a two-channel transient recorder 
(Datalog 912). 
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1-1 motonit: sensor n 
Gssm catheter rnetai tube ;onstructión ia& tube adder flow'pmbe nylon ttiread 

F i g .  1 :  g Schematic diagram of t h e  model. se t -up.  
b Photograph of t h e  c o n s t r i c t i o n  po in t  C when t h e  l a t e x  tube  i s  re -  

moved. 
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Tube wall properties .................... 
To determine the elastic and viscous properties of the latex tube wall, 

some uniaxial tensile experiments were performed. Firstly, in a tensile ma- 
chine fZwick 1434) the force-displacement relation was determined at a con- 
stant strain-rate of 0,005 s-’. The specimen used in this experiment were 
strips approximately 4 mm in width, varying from 10 to 12 mm in length and 
0.2 mm thick. A typical result is shown in figure 2.  Next the properties 
were determined at faster strain rates and as well as the dependence of the 
strain value and of the strain rate were investigated. The strain variation 
(AG = 0.20) was suppressed to the specimen with the aid of an electrodynamic 
exciter (Ling Dynamic 2000), the resulting load was measured with a piezo- 
electrical load cell (Kistler 9203) and the elongation with a capacitive 
displacement-measuring system (Boersma CVC4 IV). For a detailed description 
of the experimental procedure we refer to Sauren et al. (1983). Typical re- 
sults are given in figure 3. From these figures two quantities were deter- 
mined which characterise the elastic and viscous properties, being the aver- 
aged value of the slope of the upward and downward stress-strain curve and 
the stress difference between both curves at a strain corresponding to half 
the suppressed strain variation. The relation between those quantities and 
the values of strain and strain rate is given in figure 4. From this it is 
concluded that the slope decreases with increasing strain-value, which is in 
accordance to the stress-strain curve given in figure 2 .  The stress-diffe- 
rence between the two stress-strain curves shows hardly no influence of the 
strain-rate value. This indicates that the viscoelastic material properties 
cannot easily be described with the aid of a simple Maxwell-model. It is fi- 
nally remarked that the results of the various experiments has to be com- 
pared to each other with some carefullness due to the time elapsed between 
the experiments. On the other hand all experiments were performed on the 
same tissue strip taken from the tube in which the pressure jumps were mea- 
sured. 

Characteristic results ---_------------------ 
A typical result of the pressure signal in a uniform tube and close to 

the valve is given in figure 5 .  As a result of valve closure the pressure 
rapidly increases. The rise time of the pressure is about 10 msec. and is 
caused by the finite closing time of the occluder. This initial fast pres- 
sure jump is followed by a much more gradual increase, probably due to the 
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Fig. 2: Force-elongation curve of a latex specimen, at a low strain-rate 
(width 4.0 mm, length 10.6 am, thickness 0.2 mm). 

I ais C 

- AL 
Fig. 3: Force-elongation curves of a latex specimen at higher strain-rates. 

(width 4.0 mm, length 11.5 mm, thickness 0.2 am, pre-strain 0.15). 
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Fig. 4: Relation between the averaged value of the slope of the upward and 
downward stress-strain curve and the values of g strain and b 
strain-rate. Analogously the dependency of the stress difference be- 
tween both curves at a strain corresponding to half the suppressed 
strain variation as function of c strain and a strain-rate is given. 
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influence of fluid viscosity. Finally, the pressure signal shows a second 
rapid increase caused by the wave reflection at the upstream reservoir. In 
figure 6 one pressure jump is given recorded at two different positions. 
From this the velocity of wave propagation is estimated to be about 4 m/s. 
The step-wise shape of the pressure changes observable here, is caused by 
the transient recorder. In figure 7 a simultaneous recording of the jumps in 
pressure and diameter 0.22 m. upstream of the valve are given. This illus- 
trates the existing close relationship between area and pressure changes and 
is used to determine the pressure-volume relationship of the tube during and 
over the jump. In figure 8 the pressure wave is shown as function of posi- 
tion. The first wave form is close to the valve, the remaining upstream of 
it at different positions. From these wave forms it is seen that they flat- 
ten when travelling upstream and that consequently the rise-time of the 
pressure jump increases with position. Non-linearities and wall viscosity 
are thought to be here the dominant factors. Furthermore, the pressure jump 
appears to decrease slightly while propagating upstream. Probably, this is 
caused by the influence of fluid viscosity. Finally, some characteristic 
wave-reflection results are given in figure 9. In the right hand tracing of 
the upper half the pressure jump close to the valve is given in case of a 
more compliant "sinus" section than "aortic" one. As a reference in the left 
half the pressure jump in a uniform tube is given. Due to the eonpliant 
"sinus" region the rise time of the pressure close to the valve is found to 
be increased. Similarly in the lower half the pressure jump is given in case 
the "sinus" is less compliant than the "aorta". Then pressure oscillations 
close to the valve axe observed. In the next section some physical models 
will be treated to describe these experimental observations. 
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uo= 021 rnfs 
x0=0.02 m 

L 1ûQmsec. i -i 

Fig. 5: Typical tracing o f  the pressure jump measured close to the valve. 

Fig. 6: Recording of the pressure jump at two positions: close to the valve 
and at the upstream end of the tube. 
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Fig. 7: Simultaneous recording of the jumps in pressure and diameter halfway 
the tube. 

i 

'UC - 
O -X 

u0=0.33mts 
xg zo.02 m 

x-% fml: O 0.05 Q10 Q15 0.20 Q2f Q3 035 0.G 

Fig. 8: The pressure wave form as function of position. 
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Physical models. 

Basic equations. --------------- 
The observed wave phenomena can mathematically be described by the one- 

dimensional laws of mass and momentum for a straight uniform flexible tube, 
see Lighthill ( 1 9 7 8 )  and Pedley ( 1 9 7 8 ) .  Starting from the continuity equa- 
tion and the axial component of the Navier-Stokes equation in cylindrical 
coordinates: 

la 

lb 

au+IL (rv) = O ax r ar 

they read after integration over the cross-sectional area and using the ki- 
nematic boundary condition: 

a aA 2a -(ÜA) ax t - at = 0 

2b 

Here u, 
B is the radial velmity; x and r are axial and radial coordinates; t is 
time; Q and Q are viscosity and density of the fluid; T = rl % I R  is the wall 
shear stress and A = xR2 is the cross-sectional area. Usually equation 2b is 
further reduced by stating: 

denote the cross-sectional average of axial velocity and pressure, 

au 

3 

After omitting the average symbols the set of equations 2 then obtains its 
familiar form: 

4a 

4b 

a aA -(UA) t = O ax 

The assumption of one-dimensionality leaddg t o  ecjliation 
lengths of all disturbances of interest are long compared to the diameter. 

hclUs if the wave 
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In our case the main wave length associated with the axial extent of the 
wave front is estimated to be about six times the tube diameter. Besides, 

the neglection of the difference between u and u in equation 3 is reasona- 
ble when the velocity profile is flat with thin boundary layers outside it, 
as for the turbulent flow situation before valve closure. After valve clo- 
sure however, the profile will break down by viscous diffusion as shown by 
Weinbaum and Parker ( 1 9 7 5 ) .  The radial pressure variation is quite obviously 
more or  less constant far before and after the wave front. Within the front 
however, small deviations of pR from the pressure at the centerline of the 
tube of the order of 5% are possible. We will assume here that the phenomena 
observed are well described by the set of equations 4 .  

-- 
-2 2 

In order to describe the wall behaviour we follow Hivity and Collins (1974) 
by introducing the following tube wall: 

5 

Now we define the compliance per unit length c, the wave speed a and a new 
variable v :  

6 

inserting these definitions in eqs.4, and after some rearrangement we obtain 
the following characteristic set: 

7 

t The t signs refer to the right running characteristics (c 1, while the 
- signs refer to the left running characteristics (c-1. The force T equals 
2T We shall assume that T is some function of velocity u. Besides, one of R' 
the equations 7 can also be used in combination with the continuity equa- 
tion: 

- 

8 
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This set of equations needs to be completed with the initial and boundary 
conditions: 

9a t < o  : u = -"o I P = Po + TOx 

9b x = o ,  t 2 o  : u = U{t) 

The subscript O will represent the initial state. 

We shall now consecutively discuss the non-linear inviscid solution, some 
aspects of wall shear stress, the influence of wall viscosity and reflec- 
tions due to tube inhomogeneities. For the sake o f  simplicity and clearness 
each of these effects will be treated separately. The treatment of non-li- 
near effects is described e.g. by Pedley (19781, while the effects of wall 
shear stress and wall viscosity are treated on the basis of wave coordinates 
according to Whitham (1974). 

Non-linear inviscid case. 
Neglecting shear stresses and wal1 viscosity, eqs. 7 read: 
------c----------------- 

while v can be rewritten as: 

11 p 1  
Y = J -dp Qa 

The initial conäition is then u = -uo, v = O for t i O and the boundary con- 
dition at x = O is u = U for t 2 O. Applying the invariance of u - v to the 
points A and B of fig. 10 we obtain: 

12 VB = u. 

We can approximate v ,  defined by eq. 11, by assuming a linear relation be- 
tween a and p: 

13 a = aO(l - (r(p-p0)) 
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-X 

Fig. 10: x-t diagram in case of non-linear elastic tube behaviour, 

Fig. 11: Introduction of the wave-coordinates E and a. 

o AL -X 

Fig. 12: x-t diagram in case of a tube inhomogeneity. 
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with a(p-po) < <  1. Then: 

14 v = -t(P-Po) 1 t ?a(P-P0) 1 2 1 
eaO e 

and the solution for the jump in pressure becomes: 

15 = ea u (1 - -uea 1 'B - '0 O 0  2 O 0  U 1 

For the latex tube a > O, so the jump becomes smaller due to the non-linea- 
rity. 

There is a second effect of importance. The front of the wave travels with 
velocity (-uotao) upstream. The tail of the wave however, travels with velo- 
city (uBfag) which equals ao(l-a(pe-po~) according to eq. 13. With eq. 15 

the front velocity €or ugai > 1. More generally spoken the wave form travels 
with velocity 

the tail wave velocity becomes approximately ao-a~aouO, 2 which is larger than . 

16 5x - = a + u  5t 

As for each point of the wave form: 

17 -'O u - v =  

we then find to first order in p-po from eqs. 13 and 14: 

ia 

The wave front center, defined as that particular point where 
1 

p-po = -(p -p 2 B 0  travels with velocity: 

- 1  
i 

19 

From eq. 10 it follows that the wave travels undistorted for aQai = 1 as al- 
ready pointed out by Olsen and Shapiro ( 1 9 6 7 i ,  while €or the special case of 
u = O the wave would steepen. In our case a,a2 is somewhat larger than 1 and O 
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a slightly decreasing-slope is expected. Assuming an instantaneous jump of 
the pressure at x = O, the rise time of the pressure at position x will be: 

20 1 1 = (ae - -)u x 1 
2 0  At = x {- - uBiaB -u +a 
aO O 0  

Finally we consider the influence of initial pressure po on wave front velo- 
city, by raising pg with regard to a reference pressure pref. Again we as- 
sume u(po-pref) < <  1 and 

To first. order in pressure we then find for the velocity of the wave front 
center : 

22 

Some aspects of wail shear stress. 
Por the linear, pure elastic situation the equation set 7 using eq. 1 1  redu- 
ces to 

................................. 

23 

The corresponding initial and boundary conditions read: 

24a and i k=  ax To 01: Po - - Pref + TOx for t -* -00 

O u = - u  

24b u = u,(t) at x = O 

In order to analyse the problem we shall introduce the following wave coor- 
dinates (sTe figure 1 1 ) :  

T, 
25 
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where to is a characteristic time for valve closure. The dimensionless time 
a has to be interpreted as the time elapsed since the passage of the wave 
front on a fixed x position. Further we shall assume that the wall shear 
stress is a function of velocity only, which vanishes for zero velocity: 

26 

Finally we introduce reduced values for u, v and T: 

21 

Then eq. 23 for the right running characteristic becomes: 

28 a -(U + Y )  = T 
1 

a% 

As a second equation it is useful to rewrite the linearised version of eq. 
a: 

29a 

in terms of the new variables: 

29b 

where we have defined the small parameter as: 

30 

The initial and boundary conditions in terms of the new variables are: 

3 la 

31b 

6 =. - 1 ,  Y = El 

U = ûv(u) for E, = O 

for u -, -0 

<. 

Now Y ,  Û and T are expanded in the small parameter E 



This series expansion will be valid under the condition 
After a substitution of this expansion in eqs. 28 and 29b and after equating 
terms with equal powers of E we obtain: 

< <  1. 

32a 

32b 

33a 

33b f 

These equations cannot be solved without further specifying the functional 
relationship T(Û). However it is possible to derive a property fo r  the pres- 
sure a t  the valve which has a rather general validity. To that end we inte- 
grate eq. 32a, making use of condition 31a: 

A 

34 

After substitution of this result in 32b we find: 

35 

This can be used in 33a for the first order disturbances: 

36 

Apglying this to the valve, where O we find: 

37  
-00 

Rewriting this in the orginal physical quantities we find: 
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3 8  

This means that after complete valve closure when T(" (0 )  = O, the pressure 
steadily increases with a rate proportional to the initial wall shear stress 
Tg. It is remarked again that the solution is only valid for sla < <  1. 

In order to proceed further, we shall distinguish two different cases for 
the velocity dependence of T: 
case i: 

Now the solution of eq. 3 5  becomes: 

and from eq.. 3 4  it follows: 

40b 

Since Ûv(a) varies from -1 to O, the total change in v"' across the wave 
equals : 

and the rate of change at the wave front center (o=O) reads 

41b 

The characteristic length scale for the exponential decay of the jump ap- 
pears to be, referring to the definition of El: 
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The solution for G(l) and Û(l' is found by integration of eqs. 36 and 37 
subject to the condition that C f l )  and U ( 1 )  both vanish as u + --. The re- 
sult is, see appendix: 

-E1/2 1 43b V = 1 (a)e (1  4- 4 E,) 2 v  

with Iv = I ( 1  4- ,Ûv) do 
-0 

case ii: 

- 2  Since in the present situation l u i = -  15, we can take T = Û . In that case eq. 
3 5 becomes 

45 

-1 1 with solution (tanh)-'Û(') = (tanh) Ûv(u) - 2 El. Again, since Ûv(a) varies 
from -1 a t  a + -0 to O after valve closure, the total jumps in velocity and 
"pressure" are: 
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The influence of wall viscosity. 
The effects o f  wall viscosity can be treated in a similar way as that of 
wall shear stress. As starting eqs. we take the linearised inviscid version 
of eq. 7 for the right running characteristic and the equation of continuity 
o f  mass, eq. 29a: 

............................... 

47a 

47b 

a a '0 a2A 
i a. g)(u i v )  = - - - e axat  

it is possible to rewrite the right hand side of eq. 47a 

with 47b: 

48 

Let (I and E2 be the new independent coordinates, which are defined as: 

go% 

W O  
49 U = (aot-x)/aoto and E2 = y x 

Then eqs. 47 can be written, using eq. 48 as: 

50 a au Z ( G  - v.) = E 2 
- 

with 

51 

Expanding the solution for Û and G in powers of 
roth order in c2 yields, under the condition e2u < <  1 

and equating terms of ze- 

5 2a 



-28- 

and $ ( O ) +  O as +-uo (0) The solution of eq. 52a with initial condition U 

u + - is: 

Co, eq. 52b becomes the ordinary diffusion equation: 

5 4  

If we represent the boundary condition Uv(o) by the following form: 

55 

the solution of eq. 54 becomes: 

56 

This solution illustrates the gradual broadening o€ the wave front due to 
wall viscosity. The time derivative of velocity and of v at the wavefront 
center, o = O, are: 

57 

Hence it follows that Eo can be interpreted in terms of the maximum rate of 
change of  the velocity at the valve: 

58 

With this definition of Eo eq. 57 rewritten in the original variables be- 
comes : 
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59 
d'v 2 I 

aOuOQ 

aJo) dUV 2 " ( d t ) 0  goAo 
' a t T j r n a x  = (KIo 1 1  + 3 2  

An expression for the rate of change of the pressure follows from eqs. 5 and 
6 in linearised form: 

60 

2 
since - a is zero at the wave front center. 31, aJo' Then (atlaax = ea (-- 

at2 O at 'max 1 

The solution for Q") at the valve is quite easily obtained by substituting 
expression 56 for U(') in the first order equation: 

Sla 

and taking into account that U") is O at E 2  = O. We then find for 
( 1 ) .  v .  

61b 2J2nE* 

2 
U -- 

ZE* U 

e 

The solution is accurate if z2u < <  1. So wall viscosity does not modify the 
final. valve of 6 ( 1 )  after the jump. 

lmr~mrggflgc$lggs. 

Suppose two regions of different wall properties and cross-sectional areas 
and assume that the change of properties occurs in a distance i satisfying 
the compactness condition (Lighthill 1 9 7 8 ) :  

62 l- << 1 
aûitû 

, i = 1 , 2  

The inviscid, elastic and linearised equations 7 read: 
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63 

with 

64 

i = 1,2 

The initial and boundary conditions 9 reduce to: 

U ~ = - U ~ ~ U ~ = - U  A /A t i 0  
O 01 02 I Pi = 'O 65a . 

x = o ,  t > o  6% u = o  1 

Continuity o f  pressure and flow at the interface (x = AL) implies: 

5 6a Pl(ALrt) = P2(ALtt) 

66b 

We further introduce as reflection coefficient: 

67 
2--2 
-2 i R = r  
2+z 1 

pa,. 
UI - -  with Z1 - 

A. 1 

-i- Combination of a c -characteristic in region 1 and a c--characteristic in 
region 2 using eq. 66 then directly leads to the pressure solution in the 
twû regions a5 f m c t i o n  of tim, see figure asd: 

68 

with : 

t 
O * Atl 

* Atl+At2 
+ 3Atl+At2 
+ 3At1+2At2 
+ 5Atl+2Bt2 
+ 5At1-i-3At2 
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69 

and : 

70 

with: 

71 

(AL-Xl 1 
O1 a , A t 2  = 2 x1 

aO1 
- -  - 

t 

O + A t 3  

+ A t g + A t 4  

+ A t 3 + 2 A t 4  

The limiting value in both regions is as expected: 

2 n - - lim [ p O ~ ~ a 0 1 ~ 0 + 2 p a 0 1 ~ O R ( l ~ ~ + ~  +. . . R  1 P i  n+- 72 

= po+ea u A /A 02 o o1 02 

Hence a positive reflection coefficient ( Z 1  < Z 2 )  causes a gradual increase 

the pressure will oscillatory vary. 

A F  &ka L4bCI pressure in both regions, Yhife f n r  a negative value of R ! Z A  > Z2E 
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Verification of theory 

influence of non-linearities 
According to èqs. 15, 19 and 20 the non-linearities affect the pressure 

_____--___----_------------- 

height, the velocity of the wave front center and the rise time of the pres- 
sure jump at position x. To verify theory, first the material constant a, 

defined by eq. 13, has to be determined from the pressure dependence of both 
the cross-sectional area and the compliance per unit length (see eg. 6). 
Using a screw-micrometer the diameter-pressure relation was measured under 
quasi-static conditions. From this the area-pressure and compliance-pressure 
relationships were calculated. The results are given in figure 13.  Besides, 
the simultaneous recorded pressure-diameter changes as for example shown in 
figure 7 were also used. The compliance per unit-length as determined from 
the amplitude ratio of diameter and pressure jump are given, as a function 
of pressure, in figure 13b. This compliance will be denoted as the dynamic 
one. Finally, figure 14 shows the diameter-pressure relation and the com- 
pliance-pressure relation, derived from the former one,during the jump. The 
differences in the initial values and slopes with those in figure 13 are 
striking. It is likely that they are a consequexe of the visco--elastic pro- 
perties of the tube wall. Figure 15 shows the corresponding calculated wave 
speeds together with the values of a. and a for the three previous situa- 
tions. 

Next, the pressure height close to the valve was measured as function of 
the initial velocity, the result of which is given in figure 16. ?he agree- 
ment between theory and experiment is close, especially when the dynamic va- 
lues of  the compliance are used. The dependence of the velocity of the wave 
front center on the initial velocity is difficult to measure due to the res- 
tricted range of adjustable initial velocities. Hence the initial state was 
changed by raising the initial pressure. The result of this experiment is 
shown in figure 17,  together with the prediction according to eq. 2 2 .  Here 
again the agreement is fair. Finally, the rise-time of the pressure jump, 
defined by the time interval between 5 and 95% of the amplitude, is deter- 
mined as function of position from wave forms like those shown in figure 8 .  

Non-linear theory based on the values of both static and dynamic compliances 
predicts that the wave form would travel almost undistorted which is in con- 
trast with the oxperimental results, see figure 18. In this figure also the 
prediction is given based upon the calculated wave speed derived from the 
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F i g .  13: Relationships over t h e  pressure jump between 
- a diameter and pressure and & compliance and pressure. 
The fitted lines correspond to: 
a D = 17.12 {1+0.36 10e4(p-p ) + 0.082 lO-'[p-p0) 1 ,  r2 = 0.999. 
- b c = 1.33 lo-' (1H3.23 10-J(p-po)l, r2 = 0.952. 
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Fig. 14: Relationships during the pressure jump between 
- a diameter and pressure and b compliance and pressure. 
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Fig. 15: The wave-speed as function of pressure, calculated from the data of 
figs. 13 and 14. The fitted lines correspond to: 

I: a = 3.71 
PI: a = 4.11 (14.53 (p-po)}, r2 = 0.879 

1x1: a = 5.36 i1-3.3 loa4 (p-p O ) f t  r2 = 0.935 

o :experiment 
-:theory 

Fig. 16: The amplitude of the pressure jump as function of the initial velo- 
city. 
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Fig. 17: 

Fig. 

O 

The velocity of the wave front center as function of the initial 
pressure. 
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18: The rise-time of the pressure jump as function of position. 
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diameter-pressure relationship during the jump. Although this prediction is 
quite unaccurate due to the small time interval of measurement (a 15 msec), 
the much greater values indicate that the wall viscosity is the dominant 
cause of the experimentally observed wave front expansion. 

Influence of wall shear stress .............................. 
The main influences of the wall shear stress as predicted from theory 

are the steadily increase of the pressure after the jump front (eq. 3 8 1 ,  the 
gradual decrease of the height of the pressure jump as function of position 
(es. 4ia) and a contribution to the wave front expansion (es. 41b). For all 
theoretical predictions a value of the initial wall shear stress is necessa- 
ry. This value was estimated from the turbulent-flow pressure-loss relation 
(Schlichting, 1979): 

73 
2 

-0.25 ' eUg with A = 0.316 Xe To = A z o  

A verification of this relation at the Xeynoldsnuabers occuring in our set- 
up (i800-72001 , was performed by the pressure drop measurement over a uni- 
form tube of 80 cm length, the result of which is given in figure 19.  

Next, the slope of the pressure after the jump was measured close to the 
valve as function of the initial velocity. As given in figure 2Q; theory and 
experiment show qualitatively the same tendency although theory underesti- 
mates the experimental observation considerably. The 6ecrease of the h e i g h t  

of the pressure jump as function of position, predicted by theory, is also 

observed. However, figure 21 illustrates that a much stronger decrease was 
found than predicted from theory. Both results indicate that the assumed re- 
lation 7 3  underestimates the initial wall shear stress considerably, proba- 
bly due to the disturbance of pressure-catheters and valve house. Finally, 
the influence of wall shear stress on the wave front expansion was estimated 
from eq. 41b to be less than 0.5 msec. Hence wall shear stress is not expec- 
ted to cause the observed expansion. 



-37- 

O 

100- 

Fig. 19: The initial wall shear stress as function of the initial velocity, 
determined from the pressure drop over a uniform tube of 80 cm 
length. 

O 

Fig. 20: The slope of the pressure after the jump close to the valve as 

function of the initial velocity. 

a10 i '  
O :expiment 

-: tilay 

O 

O 
O 

Fig. 21:  The decrease of the height of the pressure jump as function of po- 

sition. 
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influence of wall viscosity 
The main influence of wall viscosity is expected from experiment to be the 
expansion of the wave front as function of position. This is justified by 
the analysis of the simple material model given by eq. 5,  leading to eq. 60. 
From the tensile experiments given in figure 4 the conclusion was drawn that 
this material model is not appropriate to describe the observed independence 
of the viscous parameter on the strain-rate value. Bowever, as a very crude 
approximation we deduce the visco-elastic parameter go of eq. 5 from the 
measured value of Au given in figure 4d for values of of about 2.0 s-l. 
With p = ah IR and E = ZdA/Ao, where ho and Ro correspond t o  the initial 
thickness and radius of the tube, it follows that: 

........................... 

1 
O 0  

74 - -  Au - 4 9 ~ A ~ R ~  
o 
E 

5 This yields a value for go of 1 .O 10 

59 we find a prediction for the decay of the slope which is compared with 
the experimental result in figure 22. In spite of the crudeness of the ap- 
proximations the agreement is quite satisfactory. 

Inserting this value into eq. 

Wave reflections 
Finally, the observed wave reflections in figures 9 and 10 can straight for- 
ward be explained from linear theory, leading t o  eq. 6û. In figure 23a the 
jump is shown in the compliant "sinus" case. At the left the pressure jump 
is shown in the "sinus" and at the right the one in the "aorta'. Due to the 
small length of the "sinus" region in comparison with the wave length a mo- 
notonic increase of pressure is found, which however converges quite well to 
the theory line. In case of a stiffer "sinus" region, see figure 23b, both 

---------------- 

__- - 

theory and experiment show the large oscillations close to the valve and 
smaller ones in the "aorta". 
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t * /  

Fig. 22: The rise-time o f  the pressure jump as function of position compared 
with the (crude) visco-elastic model prediction. 
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Fig. 23: The pressure jumps close to the valve and in the connecting tube in 
cases of a, 
tion than the remaining tube. 
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Concludins discussion 

In conclusion it is stated that the present model experiments reveal that 
wave phenomena in a long uniform tube can be determined accurately by means 
of the present experimental method and that they are partly well described 
by the one-dimensional laws of mass and momentum. The pressure height ap- 
peared to be affected by non-linearities and wall shear stress, and in the 
inhomogeneous case by the compliance o f  the sinus region. Our experiments 
also indicate that wall viscosity is the dominant factor in the gradual 
flattening of the wave form. This was also predicted from the theoretical 
analysis using an oversimplifying material model. The gradual pressure in- 
crease after the pressure jump is found to be caused by the influence of 
wall shear stress. €or future research the next three shortcomings has t o  be 
raised. Firstly, a better material model has to be used, for example in the 
way Holens%ein et al. (1984)  did for arteries. Secondly, a better estimate 
of the initial wall shear stress has to be determined. Finally, coupling of 
the tensile experiments and diameter-pressure relationship is needful. Due 
to the relatively large pre-strain (W 7 % ) ,  linear theory predicts a com- 
pliance value which is about 60% lower than observed in the experiments. 
Hence an analysis of non-linear elastic deformation has t o  be performed, in 
which for example the latex is assumed to behave as a Mooney-Riviin material 
(Ogden 7984) .  This all will be the subject of future research. 

With regard to the medical implications of this study it i s  stated that 
the magnitude of the pressure rise just after valve closure is primarily de- 
termined by the back flow velocity. Hence it is worthwhile to develop a 
prosthetic leaflet valve which exhibits the natural gradual way of closure. 
Furthermore: the magnitude as well as the rise time of the pressure jump 
close to the valve are strongly determined by the compliance of the sinus 
region with regard to the aortic one. Therefore, it is important that in 
case of a prosthetic leaflet valve the sinus region remains its compliance 
and that it is not stiffened due to the operation procedure. 

Acknowledclement 
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Appendix 

Substition of eqs. 39 and 40 in eq. 36 yields after integration: 

Al 

A2 where : 

The expression for + ( l )  from A l  is substituted into eq. 33b 

A3 

with solution: 

 he expression for v ' l '  foliowc then from AI  : 
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De belangrijkste tekortkomingen van deze studie zijn: 
- de verklaring van de uitdijing van het golffront op basis van de visceuze 
eigenschappen van de vaatwand is niet bevredigend, aangezien het gehan- 
teerde materiaal model niet in overeenstemming is met het waargenomen na- 
genoeg constant zijn van de visceuze parameter over een groot reksnel- 
heidsbereik, zie fig. 314; 

- de verklaring van de afname van het golffront op basis van de visceuze 
eigenschappen van de vloeistof schiet duidelijk tekort; 

- de koppeling tussen de materiaaleigenschappen van het latex (fig. 2-4) en 
de gemeten druk-diameter relatie (fig. 13/14) is niet uitgewerkt. 

Met betrekking tot de voortgang van dit onderzoek stellen we ons dan ook het 
volgende voor: 
de visceuze eigenschappen van het materiaal te beschrijven met de gelinea- 
riseerde versie van de visco-elasticiteitsrelatie zoals o.a. gebruikt door 
Fung. Analoog aan de werkwijze ontwikkeld door Sauren (19821, worden de 
materiaalparameters R, 8 ,  en a 2  bepaald uit de relaxatiecurve van het 
proefstrookje. Op een gelijke wijze als aangegeven door Holenstein (1984) 
wordt vervolgens gepoogd de invloed van de daarmee corresponderende term 
in het rechterlid van vergelijking 47a uit te werken; 
ter analyse van de bijdrage van de vloeistofstroming aan de afname van de 
druksprong als functie van positie, wordt het experiment nogmaals uitge- 
voerd maar dan zodanig dat de druksprong stroomafwaarts gaat in plaats van 
stroomopwaarts. Ook zou de visceuze drukval voor klepsluiting nauwkeuriger 
gemeten dienen te worden. Daartoe ontbreekt ons vooralsnog de meetappara- 
tuur. 
de voorspelling van de compliantie van de buis op basis van lineaire theo- 
rie: 

21~R~(l-v 3 2  1 
C =  

huEO 
leidt, gebruikmakend van de beginhelling uit figuur 2, tot een onderschat- 
ting van de gemeten compliantie met zo'n 70%. De oorzaak hiervan moet 
waarschijnlijk gezocht worden in de eindige rek (7%) onder invloed van het 
initiële drukverschil over de buis (3 kPa). €en analyse op basis van niet- 
lineaire elastische deformatie waarbij het latex wordt voorgesteld als een 
Mooney-Rivlin materiaal (Ogden 1984) lijkt perspectief te bieden. Verdere 
uitwerking van het model en toetsing aan experimentele gegevens is de be- 
nodigde volgende stap. 

Een belangrijk vraagpunt daarbij is evenwel waar het huidige verhaal is af 
te sluiten en een nieuw begint. 


