50 research outputs found

    Detection of endo-epicardial atrial low-voltage areas using unipolar and omnipolar voltage mapping

    Get PDF
    Background: Low-voltage areas (LVA) can be located exclusively at either the endocardium or epicardium. This has only been demonstrated for bipolar voltages, but the value of unipolar and omnipolar voltages recorded from either the endocardium and epicardium in predicting LVAs at the opposite layer remains unknown. The goal of this study was therefore to compare simultaneously recorded endo-epicardial unipolar and omnipolar potentials and to determine whether their voltage characteristics are predictive for opposite LVAs. Methods: Intra-operative simultaneous endo-epicardial mapping (256 electrodes, interelectrode distances 2 mm) was performed during sinus rhythm at the right atrium in 93 patients (67 ± 9 years, 73 male). Cliques of four electrodes (2 × 2 mm) were used to define maximal omnipolar (V(omni,max)) and unipolar (V(uni,max)) voltages. LVAs were defined as V(omni,max) ≤0.5 mV or V(uni,max) ≤1.0 mV. Results: The majority of both unipolar and omnipolar LVAs were located at only the endocardium (74.2% and 82.0% respectively) or epicardium (52.7% and 47.6% respectively). Of the endocardial unipolar LVAs, 25.8% were also located at the opposite layer and 47.3% vice-versa. In omnipolar LVAs, 18.0% of the endocardial LVAs were also located at the epicardium and 52.4% vice-versa. The combination of epicardial V(uni,max) and V(omni,max) was most accurate in identifying dual-layer LVAs (50.4%). Conclusion: Unipolar and omnipolar LVAs are frequently located exclusively at either the endocardium or epicardium. Endo-epicardial LVAs are most accurately identified using combined epicardial unipolar and omnipolar voltages. Therefore, a combined endo-epicardial unipolar and omnipolar mapping approach is favoured as it may be more indicative of possible arrhythmogenic substrates

    Novel insights in pathophysiology of postoperative atrial fibrillation

    Get PDF
    OBJECTIVES: Atrial extrasystoles are usually benign; however, they can also trigger atrial fibrillation. It is most likely that if atrial extrasystoles provoke a larger amount of conduction disorders and a greater degree of endo-epicardial asynchrony, the risk of postoperative atrial fibrillation increases. To test this hypothesis, we investigated the effect of programmed atrial extrasystoles on endo-epicardial conduction and postoperative atrial fibrillation. METHODS: Twelve patients (58% male, age 68 ± 7 years) underwent simultaneous endo-epicardial mapping (256 electrodes) of the right atrium during sinus rhythm and programmed atrial extrasystoles provoked from the right atrial free wall. Areas of conduction block were defined as conduction delays of ≥12 milliseconds and endo-epicardial asynchrony as activation time differences of exact opposite electrodes of ≥15 milliseconds. RESULTS: Endo-epicardial mapping data of all programmed atrial extrasystoles were analyzed and compared with sinus rhythm (median preceding cycle length = 531 milliseconds [345-787] and median sinus rhythm cycle length = 843 milliseconds [701-992]). All programmed atrial extrasystoles were aberrant (severe, moderate, and mildly aberrant, respectively, n = 6, 3, and 3) and had a mean prematurity index of 50.1 ± 11.9%. The amount of endo-epicardial asynchrony (1% [1-2] vs 6.7 [2.7-16.9], P = .006) and conduction block (1.4% [0.6-2.6] vs 8.5% [4.2-10.4], P = .005) both increased during programmed atrial extrasystoles. Interestingly, conduction block during programmed atrial extrasystoles was more severe in patients (n = 4, 33.3%) who developed postoperative atrial fibrillation (5.1% [2.9-8.8] vs 11.3% [10.1-12.1], P = .004). CONCLUSIONS: Atrial conduction disorders and endo-epicardial asynchrony, which play an important role in arrhythmogenesis, are enhanced during programmed atrial extrasystoles compared with sinus rhythm. The findings of this pilot study provide a possible explanation for enhanced vulnerability for postoperative atrial extrasystoles to induce postoperative atrial fibrillation in patients after cardiac surgery

    Atrial extrasystoles enhance low-voltage fractionation electrograms in patients with atrial fibrillation

    Get PDF
    BACKGROUND AND AIMS: Atrial extrasystoles (AES) provoke conduction disorders and may trigger episodes of atrial fibrillation (AF). However, the direction- and rate-dependency of electrophysiological tissue properties on epicardial unipolar electrogram (EGM) morphology is unknown. Therefore, this study examined the impact of spontaneous AES on potential amplitude, -fractionation, -duration, and low-voltage areas (LVAs), and correlated these differences with various degrees of prematurity and aberrancy. METHODS AND RESULTS: Intra-operative high-resolution epicardial mapping of the right and left atrium, Bachmann's Bundle, and pulmonary vein area was performed during sinus rhythm (SR) in 287 patients (60 with AF). AES were categorized according to their prematurity index (&gt;25% shortening) and degree of aberrancy (none, mild/opposite, moderate and severe). In total, 837 unique AES (457 premature; 58 mild/opposite, 355 moderate, and 154 severe aberrant) were included. The average prematurity index was 28% [12-45]. Comparing SR and AES, average voltage decreased (-1.1 [-1.2, -0.9] mV, P &lt; 0.001) at all atrial regions, whereas the amount of LVAs and fractionation increased (respectively, +3.4 [2.7, 4.1] % and +3.2 [2.6, 3.7] %, P &lt; 0.001). Only weak or moderate correlations were found between EGM morphology parameters and prematurity indices (R2 &lt; 0.299, P &lt; 0.001). All parameters were, however, most severely affected by either mild/opposite or severely aberrant AES, in which the effect was more pronounced in AF patients. Also, there were considerable regional differences in effects provoked by AES. CONCLUSION: Unipolar EGM characteristics during spontaneous AES are mainly directional-dependent and not rate-dependent. AF patients have more direction-dependent conduction disorders, indicating enhanced non-uniform anisotropy that is uncovered by spontaneous AES.</p

    Vicarious praise and pain: parental neural responses to social feedback about their adolescent child

    Get PDF
    FSW - Self-regulation models for health behavior and psychopathology - ou

    Adolescents’ affective and neural responses to parental praise and criticism

    Get PDF
    Social feedback from parents has a profound impact on the development of a child's self-concept. Yet, little is known about adolescents’ affective and neural responses to parental social feedback, such as criticism or praise. Adolescents (n = 63) received standardized social feedback supposedly provided by their mother or father in the form of appraisals about their personality (e.g., ‘respectful’, ‘lazy’) during fMRI scanning. After each feedback word, adolescents reported their mood. Additionally, adolescents had rated whether feedback words matched their self-views on an earlier occasion. In line with preregistered hypotheses, negative parental feedback worsened adolescents’ mood, which was exacerbated when feedback did not match adolescents’ self-views. Negative feedback was associated with increased activity in the neural ‘saliency network’, including anterior insula, anterior cingulate cortex and dorsomedial prefrontal cortex. Positive feedback improved mood and increased activity in brain regions supporting social cognition, including temporoparietal junction, posterior superior temporal sulcus, and precuneus. A more positive general self-view and perceived parental warmth were associated with elevated mood, independent of feedback valence, but did not impact neural responses. Taken together, these results enhance our understanding of adolescents’ neural circuitry involved in the processing of parental praise and criticism, and the impact of parental feedback on well-being

    Characterization of pre-existing arrhythmogenic substrate associated with de novo early and late postoperative atrial fibrillation

    Get PDF
    Background: PoAF is the most common complication after cardiac surgery and may occur in patients with pre-existing arrhythmogenic substrate. Characterization of this substrate could aid in identifying patients at risk for PoAF. We therefore compared intra-atrial conduction parameters and electrogram morphology between patients without and with early- (≤5 days after surgery) and late- (up to 5 years) postoperative atrial fibrillation (PoAF). Methods and results: Epicardial mapping of the right and left atrium and Bachmann's Bundle (BB) was performed during sinus rhythm (SR) in 263 patients (207male, 67 ± 11 years). Unipolar potentials were classified as single, short or long double and fractionated potentials. Unipolar voltage, fractionation delay (time difference between the first and last deflection), conduction velocity (CV) and conduction block (CB) prevalence were measured. Comparing patients without (N = 166) and with PoAF (N = 97), PoAF was associated with lower CV and more CB at BB. Unipolar voltages were lower and more low-voltage areas were found at the left and right atrium and BB in PoAF patients. These differences were more pronounced in patients with late-PoAF (6%), which could even occur up to 5 years after surgery. Although several electrophysiological parameters were related to PoAF, age was the only independent predictor. Conclusions: Patients with de novo PoAF have more extensive arrhythmogenic substrate prior to cardiac surgery compared to those who remained in SR, which is even more pronounced in late-PoAF patients. Future studies should evaluate whether intra-operative electrophysiological examination enables identification of patients at risk for developing PoAF and hence (preventive) therapy.</p

    Classification of sinus rhythm single potential morphology in patients with mitral valve disease

    Get PDF
    Aims The morphology of unipolar single potentials (SPs) contains information on intra-atrial conduction disorders and possibly the substrate underlying atrial fibrillation (AF). This study examined the impact of AF episodes on features of SP morphology during sinus rhythm (SR) in patients with mitral valve disease. Methods and results Intraoperative epicardial mapping (interelectrode distance 2 mm) of the right and left atrium (RA, LA), Bachmann’s bundle (BB), and pulmonary vein area (PVA) was performed in 67 patients (27 male, 67 ± 11 years) with or without a history of paroxysmal AF (PAF). Unipolar SPs were classified according to their differences in relative R- and Swave amplitude ratios. A clear predominance of S-waves was observed at BB and the RA in both the no AF and PAF groups (BB 88.8% vs. 85.9%, RA 92.1% vs. 85.1%, respectively). Potential voltages at the RA, BB, and PVA were significantly lower in the PAF group (P < 0.001 for each) and were mainly determined by the size of the Swaves amplitudes. The largest difference in S-wave amplitudes was found at BB; the S-wave amplitude was lower in the PAF group [4.08 (2.45–6.13) mV vs. 2.94 (1.40–4.75) mV; P < 0.001]. In addition, conduction velocity (CV) at BB was lower as well [0.97 (0.70–1.21) m/s vs. 0.89 (0.62–1.16) m/s, P < 0.001]. Conclusion Though excitation of the atria during SR is heterogeneously disrupted, a history of AF is characterized by decreased SP amplitudes at BB due to loss of S-wave amplitudes and decreased CV. This suggests that SP morphology could provide additional information on wavefront propagation

    Biatrial arrhythmogenic substrate in patients with hypertrophic obstructive cardiomyopathy

    Get PDF
    Background: Atrial fibrillation (AF) in patients with hypertrophic obstructive cardiomyopathy (HOCM) may be caused by a primary atrial myopathy. Whether HOCM-related atrial myopathy affects mainly electrophysiological properties of the left atrium (LA) or also the right atrium (RA) has never been investigated. Objective: The purpose of this study was to characterize atrial conduction and explore differences in the prevalence of conduction disorders, potential fractionation, and low-voltage areas (LVAs) between the RA and LA during sinus rhythm (SR) as indicators of potential arrhythmogenic areas. Methods: Intraoperative epicardial mapping of both atria during SR was performed in 15 HOCM patients (age 50 ± 12 years). Conduction delay (CD) and conductin block (CB), unipolar potential characteristics (voltages, fractionation), and LVA were quantified. Results: Conduction disorders and LVA were found scattered throughout both atria in all patients and did not differ between the RA and LA (CD: 2.9% [1.9%–3.6%] vs 2.6% [2.1%–6.4%], P = .541; CB: 1.7% [0.9%–3.1%] vs 1.5% [0.5%–2.8%], P = .600; LVA: 4.7% [1.6%–7.7%] vs 2.9% [2.1%–7.1%], P = .793). Compared to the RA, unipolar voltages of single potentials (SPs) and fractionated potentials (FPs) were higher in the LA (SP: P75 7.3 mV vs 10.9 mV; FP: P75 2.0 mV vs 3.7 mV). FP contained low-voltage components in only 18% of all LA sites compared to 36% of all RA sites. Conclusion: In patients with HOCM, conduction disorders, LVA, and FP are equally present in both atria, supporting the hypothesis of a primary atrial myopathy. Conceptually, the presence of a biatrial substrate and high-voltage FP may contribute to failure of ablative therapy of atrial tachyarrhythmias in this population
    corecore