315 research outputs found

    Nit1 is a metabolite repair enzyme that hydrolyzes deaminated glutathione

    Get PDF
    The mammalian gene Nit1 (nitrilase-like protein 1) encodes a protein that is highly conserved in eukaryotes and is thought to act as a tumor suppressor. Despite being ∼35% sequence identical to ω-amidase (Nit2), the Nit1 protein does not hydrolyze efficiently α-ketoglutaramate (a known physiological substrate of Nit2), and its actual enzymatic function has so far remained a puzzle. In the present study, we demonstrate that both the mammalian Nit1 and its yeast ortholog are amidases highly active toward deaminated glutathione (dGSH; i.e., a form of glutathione in which the free amino group has been replaced by a carbonyl group). We further show that Nit1-KO mutants of both human and yeast cells accumulate dGSH and the same compound is excreted in large amounts in the urine of Nit1-KO mice. Finally, we show that several mammalian aminotransferases (transaminases), both cytosolic and mitochondrial, can form dGSH via a common (if slow) side-reaction and provide indirect evidence that transaminases are mainly responsible for dGSH formation in cultured mammalian cells. Altogether, these findings delineate a typical instance of metabolite repair, whereby the promiscuous activity of some abundant enzymes of primary metabolism leads to the formation of a useless and potentially harmful compound, which needs a suitable “repair enzyme” to be destroyed or reconverted into a useful metabolite. The need for a dGSH repair reaction does not appear to be limited to eukaryotes: We demonstrate that Nit1 homologs acting as excellent dGSH amidases also occur in Escherichia coli and other glutathione-producing bacteria

    [Short-term Regulation of the Production of Glucose By the Liver]

    No full text

    Glycolysis revisited.

    No full text
    Glycolysis is usually considered as a paradigm metabolic pathway, due to the fact that it is present in most organisms, and also because it is the pathway by which an important nutrient, glucose, is consumed. Far from being completely understood, the regulation of this pathway witnessed several important progresses during the last few years. One of these is the discovery of fructose 2,6-bisphosphate, a potent stimulator of phosphofructokinase and inhibitor of fructose-1,6-bisphosphatase. Originally found in the liver during the course of a study on the mechanism by which glucagon acts on gluconeogenesis, this compound is now recognized as a major element in the control of glycolysis and/or gluconeogenesis in many cell types and in various organisms. The other finding is that of a regulatory protein that modulates the activity of glucokinase, the enzyme that phosphorylates glucose in the liver and in the beta cells of pancreatic islets
    corecore