13 research outputs found

    DNDI-6174 is a preclinical candidate for visceral leishmaniasis that targets the cytochrome bc1

    Get PDF
    New drugs for visceral leishmaniasis that are safe, low cost, and adapted to the field are urgently required. Despite concerted efforts over the last several years, the number of new chemical entities that are suitable for clinical development for the treatment of Leishmania remains low. Here, we describe the discovery and preclinical development of DNDI-6174, an inhibitor of Leishmania cytochrome bc1 complex activity that originated from a phenotypically identified pyrrolopyrimidine series. This compound fulfills all target candidate profile criteria required for progression into preclinical development. In addition to good metabolic stability and pharmacokinetic properties, DNDI-6174 demonstrates potent in vitro activity against a variety of Leishmania species and can reduce parasite burden in animal models of infection, with the potential to approach sterile cure. No major flags were identified in preliminary safety studies, including an exploratory 14-day toxicology study in the rat. DNDI-6174 is a cytochrome bc1 complex inhibitor with acceptable development properties to enter preclinical development for visceral leishmaniasis.</p

    DNDI-6174 is a preclinical candidate for visceral leishmaniasis that targets the cytochrome bc1

    Get PDF
    New drugs for visceral leishmaniasis that are safe, low cost, and adapted to the field are urgently required. Despite concerted efforts over the last several years, the number of new chemical entities that are suitable for clinical development for the treatment of Leishmania remains low. Here, we describe the discovery and preclinical development of DNDI-6174, an inhibitor of Leishmania cytochrome bc1 complex activity that originated from a phenotypically identified pyrrolopyrimidine series. This compound fulfills all target candidate profile criteria required for progression into preclinical development. In addition to good metabolic stability and pharmacokinetic properties, DNDI-6174 demonstrates potent in vitro activity against a variety of Leishmania species and can reduce parasite burden in animal models of infection, with the potential to approach sterile cure. No major flags were identified in preliminary safety studies, including an exploratory 14-day toxicology study in the rat. DNDI-6174 is a cytochrome bc1 complex inhibitor with acceptable development properties to enter preclinical development for visceral leishmaniasis.</p

    DNDI-6174 is a preclinical candidate for visceral leishmaniasis that targets the cytochrome bc1.

    Get PDF
    New drugs for visceral leishmaniasis that are safe, low cost, and adapted to the field are urgently required. Despite concerted efforts over the last several years, the number of new chemical entities that are suitable for clinical development for the treatment of Leishmania remains low. Here, we describe the discovery and preclinical development of DNDI-6174, an inhibitor of Leishmania cytochrome bc1 complex activity that originated from a phenotypically identified pyrrolopyrimidine series. This compound fulfills all target candidate profile criteria required for progression into preclinical development. In addition to good metabolic stability and pharmacokinetic properties, DNDI-6174 demonstrates potent in vitro activity against a variety of Leishmania species and can reduce parasite burden in animal models of infection, with the potential to approach sterile cure. No major flags were identified in preliminary safety studies, including an exploratory 14-day toxicology study in the rat. DNDI-6174 is a cytochrome bc1 complex inhibitor with acceptable development properties to enter preclinical development for visceral leishmaniasis

    AI is a viable alternative to high throughput screening: a 318-target study

    Get PDF
    : High throughput screening (HTS) is routinely used to identify bioactive small molecules. This requires physical compounds, which limits coverage of accessible chemical space. Computational approaches combined with vast on-demand chemical libraries can access far greater chemical space, provided that the predictive accuracy is sufficient to identify useful molecules. Through the largest and most diverse virtual HTS campaign reported to date, comprising 318 individual projects, we demonstrate that our AtomNet® convolutional neural network successfully finds novel hits across every major therapeutic area and protein class. We address historical limitations of computational screening by demonstrating success for target proteins without known binders, high-quality X-ray crystal structures, or manual cherry-picking of compounds. We show that the molecules selected by the AtomNet® model are novel drug-like scaffolds rather than minor modifications to known bioactive compounds. Our empirical results suggest that computational methods can substantially replace HTS as the first step of small-molecule drug discovery

    Overexpression of a constitutively active protein kinase G mutant reduces neointima formation and in-stent restenosis

    Get PDF
    BACKGROUND: Neointima formation after arterial injury is associated with reduced vascular cyclic guanosine monophosphate (cGMP) and cGMP-dependent protein kinase (PKG), a major cGMP effector in vascular smooth muscle. We tested the effect of PKG overexpression on the neointimal response to vascular injury. Methods and Results- Infection of cultured rat aortic smooth muscle cells (RASMCs) with an adenoviral vector specifying a cGMP-independent, constitutively active PKG mutant (AdPKGcat) reduced serum-induced migration by 33% and increased serum-deprivation-induced apoptosis 2-fold (P<0.05 for both). Infection with wild-type PKG (AdPKG), in the absence of cGMP, did not affect migration or apoptosis. Two weeks after balloon-injured rat carotid arteries were infected with 1x 10(10) pfu AdPKGcat (n=12), AdPKG (n=8), or a control adenovirus (n=8), intima-to-media ratio was less in AdPKGcat-infected arteries than in AdPKG- or control adenovirus-infected vessels (0.26+/-0.06 versus 0.61+/-0.12 and 0.70+/-0.12, respectively, P<0.05 for both). Two weeks after intramural administration of 1.75x10(10) pfu AdPKGcat (n=8) or a control adenovirus (n=8) into porcine coronary arteries with in-stent restenosis, luminal diameter was greater in AdPKGcat-infected arteries than in control adenovirus-infected vessels (2.32+/-0.16 versus 1.81+/-0.13 mm, P=0.028), associated with reduced neointimal area (3.30+/-0.24 versus 4.15+/-0.13 mm(2), P=0.008), neointima-to-vessel area ratio (0.42+/-0.05 versus 0.58+/-0.04, P<0.05), and percent stenosis (45+/-6% versus 70+/-4%, P<0.05). CONCLUSIONS: Expression of a constitutively active PKG reduces neointima formation after balloon injury in rats and reduces coronary in-stent restenosis in pigs. PKGcat gene transfer may be a promising strategy for vasculoproliferative disorders.status: publishe

    Synthesis and pharmacological evaluation of fluoro/chloro-substituted acetyl and benzoyl esters of quinine as antimalarial agents

    No full text
    Abstract: After establishment of the pharmacokinetic and toxicological profile of quinine derivatives using in silico approaches, this study reports the synthesis of new acetyl and benzoyl esters of quinine bearing one or more fluorine or chlorine atoms on the acetyl/benzoyl moiety. The antimalarial activity of these compounds on Plasmodium falciparum 3D7 and K1 strains as well as the antiprotozoal activity on Trypanosoma brucei brucei and Trypanosoma cruzi were evaluated. Lastly, the cytotoxicity on MRC-5SV2 cells was established. The fluoroacetyl ester compounds were found to be more active in vitro against Plasmodium falciparum 3D7 strain than the reference compound quinine. All synthesized quinine derivatives were non-cytotoxic for MRC-5SV2 cells (CC50 > 64 \u3bcM). These results confirm that the introduction of one or more fluorine atoms into acetyl and benzoyl esters of quinine can sometimes improve the biological activity

    Synthesis and pharmacological evaluation of fluoro/chloro-substituted acetyl and benzoyl esters of quinine as antimalarial agents

    Full text link
    peer reviewedAfter establishment of the pharmacokinetic and toxicological profile of quinine derivatives using in silico approaches, this study reports the synthesis of new acetyl and benzoyl esters of quinine bearing one or more fluorine or chlorine atoms on the acetyl/benzoyl moiety. The antimalarial activity of these compounds on Plasmodium falciparum 3D7 and K1 strains as well as the antiprotozoal activity on Trypanosoma brucei brucei and Trypanosoma cruzi were evaluated. Lastly, the cytotoxicity on MRC-5 SV2 cells was established. The fluoroacetyl ester compounds were found to be more active in vitro against Plasmodium falciparum 3D7 strain than the reference compound quinine. All synthesized quinine derivatives were non-cytotoxic for MRC-5 SV2 cells (CC 50 > 64 µM). These results confirm that the introduction of one or more fluorine atoms into acetyl and benzoyl esters of quinine can sometimes improve the biological activity
    corecore