50 research outputs found

    A systematic review of barriers to data sharing in public health.

    Get PDF
    BACKGROUND: In the current information age, the use of data has become essential for decision making in public health at the local, national, and global level. Despite a global commitment to the use and sharing of public health data, this can be challenging in reality. No systematic framework or global operational guidelines have been created for data sharing in public health. Barriers at different levels have limited data sharing but have only been anecdotally discussed or in the context of specific case studies. Incomplete systematic evidence on the scope and variety of these barriers has limited opportunities to maximize the value and use of public health data for science and policy. METHODS: We conducted a systematic literature review of potential barriers to public health data sharing. Documents that described barriers to sharing of routinely collected public health data were eligible for inclusion and reviewed independently by a team of experts. We grouped identified barriers in a taxonomy for a focused international dialogue on solutions. RESULTS: Twenty potential barriers were identified and classified in six categories: technical, motivational, economic, political, legal and ethical. The first three categories are deeply rooted in well-known challenges of health information systems for which structural solutions have yet to be found; the last three have solutions that lie in an international dialogue aimed at generating consensus on policies and instruments for data sharing. CONCLUSIONS: The simultaneous effect of multiple interacting barriers ranging from technical to intangible issues has greatly complicated advances in public health data sharing. A systematic framework of barriers to data sharing in public health will be essential to accelerate the use of valuable information for the global good

    Impact of changing the measles vaccine vial size on Niger's vaccine supply chain: a computational model

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Many countries, such as Niger, are considering changing their vaccine vial size presentation and may want to evaluate the subsequent impact on their supply chains, the series of steps required to get vaccines from their manufacturers to patients. The measles vaccine is particularly important in Niger, a country prone to measles outbreaks.</p> <p>Methods</p> <p>We developed a detailed discrete event simulation model of the vaccine supply chain representing every vaccine, storage location, refrigerator, freezer, and transport device (e.g., cold trucks, 4 × 4 trucks, and vaccine carriers) in the Niger Expanded Programme on Immunization (EPI). Experiments simulated the impact of replacing the 10-dose measles vial size with 5-dose, 2-dose and 1-dose vial sizes.</p> <p>Results</p> <p>Switching from the 10-dose to the 5-dose, 2-dose and 1-dose vial sizes decreased the average availability of EPI vaccines for arriving patients from 83% to 82%, 81% and 78%, respectively for a 100% target population size. The switches also changed transport vehicle's utilization from a mean of 58% (range: 4-164%) to means of 59% (range: 4-164%), 62% (range: 4-175%), and 67% (range: 5-192%), respectively, between the regional and district stores, and from a mean of 160% (range: 83-300%) to means of 161% (range: 82-322%), 175% (range: 78-344%), and 198% (range: 88-402%), respectively, between the district to integrated health centres (IHC). The switch also changed district level storage utilization from a mean of 65% to means of 64%, 66% and 68% (range for all scenarios: 3-100%). Finally, accounting for vaccine administration, wastage, and disposal, replacing the 10-dose vial with the 5 or 1-dose vials would increase the cost per immunized patient from 0.47USto0.47US to 0.71US and $1.26US, respectively.</p> <p>Conclusions</p> <p>The switch from the 10-dose measles vaccines to smaller vial sizes could overwhelm the capacities of many storage facilities and transport vehicles as well as increase the cost per vaccinated child.</p

    Maintaining Vaccine Delivery Following the Introduction of the Rotavirus and Pneumococcal Vaccines in Thailand

    Get PDF
    Although the substantial burdens of rotavirus and pneumococcal disease have motivated many countries to consider introducing the rotavirus vaccine (RV) and heptavalent pneumococcal conjugate vaccine (PCV-7) to their National Immunization Programs (EPIs), these new vaccines could affect the countries' vaccine supply chains (i.e., the series of steps required to get a vaccine from their manufacturers to patients). We developed detailed computational models of the Trang Province, Thailand, vaccine supply chain to simulate introducing various RV and PCV-7 vaccine presentations and their combinations. Our results showed that the volumes of these new vaccines in addition to current routine vaccines could meet and even exceed (1) the refrigerator space at the provincial district and sub-district levels and (2) the transport cold space at district and sub-district levels preventing other vaccines from being available to patients who arrive to be immunized. Besides the smallest RV presentation (17.1 cm3/dose), all other vaccine introduction scenarios required added storage capacity at the provincial level (range: 20 L–1151 L per month) for the three largest formulations, and district level (range: 1 L–124 L per month) across all introduction scenarios. Similarly, with the exception of the two smallest RV presentation (17.1 cm3/dose), added transport capacity was required at both district and sub-district levels. Added transport capacity required across introduction scenarios from the provincial to district levels ranged from 1 L–187 L, and district to sub-district levels ranged from 1 L–13 L per shipment. Finally, only the smallest RV vaccine presentation (17.1 cm3/dose) had no appreciable effect on vaccine availability at sub-districts. All other RV and PCV-7 vaccines were too large for the current supply chain to handle without modifications such as increasing storage or transport capacity. Introducing these new vaccines to Thailand could have dynamic effects on the availability of all vaccines that may not be initially apparent to decision-makers

    Armed conflict and public health: A report on knowledge and knowledge gaps

    No full text
    Report commissioned by the Rockfeller Foundation, New York, US

    Spatial clustering of measles vaccination coverage among children in sub-Saharan Africa

    No full text
    Abstract Background During the past two decades, vaccination programs have greatly reduced global morbidity and mortality due to measles, but recently this progress has stalled. Even in countries that report high vaccination coverage rates, transmission has continued, particularly in spatially clustered subpopulations with low vaccination coverage. Methods We examined the spatial heterogeneity of measles vaccination coverage among children aged 12–23 months in ten Sub-Saharan African countries. We used the Anselin Local Moran’s I to estimate clustering of vaccination coverage based on data from Demographic and Health Surveys conducted between 2008 and 2013. We also examined the role of sociodemographic factors to explain clustering of low vaccination. Results We detected 477 spatial clusters with low vaccination coverage, many of which were located in countries with relatively high nationwide vaccination coverage rates such as Zambia and Malawi. We also found clusters in border areas with transient populations. Clustering of low vaccination coverage was related to low health education and limited access to healthcare. Conclusions Systematically monitoring clustered populations with low vaccination coverage can inform supplemental immunization activities and strengthen elimination programs. Metrics of spatial heterogeneity should be used routinely to determine the success of immunization programs and the risk of disease persistence

    An implementation framework to improve the transparency and reproducibility of computational models of infectious diseases.

    No full text
    Computational models of infectious diseases have become valuable tools for research and the public health response against epidemic threats. The reproducibility of computational models has been limited, undermining the scientific process and possibly trust in modeling results and related response strategies, such as vaccination. We translated published reproducibility guidelines from a wide range of scientific disciplines into an implementation framework for improving reproducibility of infectious disease computational models. The framework comprises 22 elements that should be described, grouped into 6 categories: computational environment, analytical software, model description, model implementation, data, and experimental protocol. The framework can be used by scientific communities to develop actionable tools for sharing computational models in a reproducible way

    Consistency between DengueNet and WHO Regional Office data.

    No full text
    <p>* Percent of pairs with identical values between DengueNet and Regional Office.</p><p><sup>†</sup> Number of matched pairs excluding missing values.</p><p><sup>‡</sup> Sum of differences between pairs (DengueNet minus RO).</p><p>Consistency between DengueNet and WHO Regional Office data.</p
    corecore