500 research outputs found

    The Caltech helicopter control experiment

    Get PDF
    This report describes the Caltech helicopter control experiment. The experiment consists of an electric model helicopter interfaced to and controlled by a PC. We describe the hardware and software. A state-space model for the angular position is identified from experimental data near hover, using the prediction error method. An LQR controller with integrators for set point tracking is designed for the system. We also undertake a separate identification and loop shaping control for the yaw dynamics

    Turbulent channel flow near maximum drag reduction: simulations, experiments and mechanisms

    Get PDF
    It is well known that the drag in a turbulent flow of a polymer solution is significantly reduced compared to Newtonian flow. Here we consider this phenomenon by means of a direct numerical simulation of a turbulent channel flow. The polymers are modelled as elastic dumbbells using the FENE-P model. In the computations the polymer model is solved simultaneously with the flow equations, i.e. the polymers are deformed by the flow and in their turn influence the flow structures by exerting a polymer stress. We have studied the results of varying the polymer parameters, such as the maximum extension, the elasticity and the concentration. For the case of highly extensible polymers the results of our simulations are very close to the maximum drag reduction or Virk (1975) asymptote. Our simulation results show that at approximately maximum drag reduction the slope of the mean velocity profile is increased compared to the standard logarithmic profile in turbulent wall flows. For the r.m.s. of the streamwise velocity fluctuations we find initially an increase in magnitude which near maximum drag reduction changes to a decrease. For the velocity fluctuations in the spanwise and wall-normal directions we find a continuous decrease as a function of drag reduction. The Reynolds shear stress is strongly reduced, especially near the wall, and this is compensated by a polymer stress, which at maximum drag reduction amounts to about 40% of the total stress. These results have been compared with LDV experiments of Ptasinski et al. (2001) and the agreement, both qualitatively and quantitatively, is in most cases very good. In addition we have performed an analysis of the turbulent kinetic energy budgets. The main result is a reduction of energy transfer from the streamwise direction, where the production of turbulent kinetic energy takes place, to the other directions. A substantial part of the energy production by the mean flow is transferred directly into elastic energy of the polymers. The turbulent velocity fluctuations also contribute energy to the polymers. The elastic energy of the polymers is subsequently dissipated by polymer relaxation. We have also computed the various contributions to the pressure fluctuations and identified how these change as a function of drag reduction. Finally, we discuss some cross-correlations and various length scales. These simulation results are explained here by two mechanisms. First, as suggested by Lumley (1969) the polymers damp the cross-stream or wall-normal velocity fluctuations and suppress the bursting in the buffer layer. Secondly, the ‘shear sheltering’ mechanism acts to amplify the streamwise fluctuations in the thickened buffer layer, while reducing and decoupling the motions within and above this layer. The expression for the substantial reduction in the wall drag derived by considering the long time scales of the nonlinear fluctuations of this damped shear layer, is shown to be consistent with the experimental data of Virk et al. (1967) and Virk (1975)

    Strong Modification of the Nonlinear Optical Response of Metallic Subwavelength Hole Arrays

    Get PDF
    The influence of hole shape on the nonlinear optical properties of metallic subwavelength hole arrays is investigated. It is found that the amount of second harmonics generated can be enhanced by changing the hole shape. In part this increase is a direct result of the effect of hole shape on the linear transmission properties. Remarkably, in addition to enhancements that follow directly from the linear properties of the array, we find a hot hole shape. For rectangular holes the effective nonlinear response is enhanced by more than 1 order of magnitude for one particular aspect ratio. This enhancement can be attributed to slow propagation of the fundamental wavelength through the holes which occurs close to the hole cutoff

    Differential Flatness and Absolute Equivalence

    Get PDF
    In this paper we give a formulation of differential flatness---a concept originally introduced by Fleiss, Levine, Martin, and Rouchon---in terms of absolute equivalence between exterior differential systems. Systems which are differentially flat have several useful properties which can be exploited to generate effective control strategies for nonlinear systems. The original definition of flatness was given in the context of differentiable algebra, and required that all mappings be meromorphic functions. Our formulation of flatness does not require any algebraic structure and allows one to use tools from exterior differential systems to help characterize differentially flat systems. In particular, we shown that in the case of single input control systems (i.e., codimension 2 Pfaffian systems), a system is differentially flat if and only if it is feedback linearizable via static state feedback. However, in higher codimensions feedback linearizability and flatness are *not* equivalent: one must be careful with the role of time as well the use of prolongations which may not be realizable as dynamic feedbacks in a control setting. Applications of differential flatness to nonlinear control systems and open questions will be discussed. Revised 14 Aug 9

    Differential flatness and absolute equivalence

    Get PDF
    In this paper we give a formulation of differential flatness-a concept originally introduced by Fliess, Levine, Martin, and Rouchon (1992)-in terms of absolute equivalence between exterior differential systems. Systems which are differentially flat have several useful properties which can be exploited to generate effective control strategies for nonlinear systems. The original definition of flatness was given in the context of differential algebra, and required that all mappings be meromorphic functions. Our formulation of flatness does not require any algebraic structure and allows one to use tools from exterior differential systems to help characterize differentially flat systems. In particular, we show that in the case of single input control systems (i.e., codimension 2 Pfaffian systems), a system is differentially flat if and only if it is feedback linearizable via static state feedback. However, in higher codimensions feedback linearizability and flatness are not equivalent: one must be careful with the role of time as well the use of prolongations which may not be realizable as dynamic feedbacks in a control setting. Applications of differential flatness to nonlinear control systems and open questions are also discussed

    Flatness and Monge parameterization of two-input systems, control-affine with 4 states or general with 3 states

    Get PDF
    This paper studies Monge parameterization, or differential flatness, of control-affine systems with four states and twocontrols. Some of them are known to be flat, and this implies admitting a Monge parameterization. Focusing on systems outside this class, we describe the only possible structure of such a parameterization for these systems, and give a lower bound on the order of this parameterization, if it exists. This lower-bound is good enough to recover the known results about "(x,u)-flatness" of these systems, with much more elementary techniques

    Trial by fire : Postfire development of a tropical dipterocarp forest

    Get PDF
    Over the past decades, uncontrolled forest fires have formed an increasing threat for tropical forests, often causing large-scale ecological and economic damage. My research shows that, even though the damage caused by the fire is enormous, a single fire does not cause the complete destruction of a tropical rain forest: A part of the trees survives the disturbance through above ground survival, or through resprouting from below ground parts. As a result of this local persistence, recolonisation by shade tolerant species is not necessary, and a relatively fast recovery of the forest is feasible. Notwithstanding this moderately positive conclusion, the long-term maintenance of forest cover is extremely insecure after a fire has occurred. The mechanisms of persistence are not sufficient to ensure local survival of shade tolerant species in the wake of repeated disturbances, with rapid degradation of the vegetation as the result. The recovery potential as observed in our research is seriously constrained if additional disturbances are caused by commercial logging of dead trees after fire, or if repeated fires occur. Such disturbances must be avoided if the long-term objectives are to maintain a forest and to secure the productivity of a timber concession. The high persistence capacity of shade tolerant tree species after a single fire was unexpected. Until now, this aspect played a minor role in theoretical models that describe succession after severe disturbance. The results of my study suggest that certain elements of succession theory have to be adjusted, in order to increase the universal applicability of the theory. From a conservation perspective, the burned forests of East Kalimantan form a meagre substitute for unburned forest. Nevertheless, the high remaining species diversity, surviving populations of timber species and evident recovery potential make these forests worthwhile to be actively protected
    corecore