70 research outputs found

    Using the behavior change wheel to identify and understand key facilitators and barriers for lifestyle care for postmenopausal breast cancer survivors:A delphi-study

    Get PDF
    BackgroundOptimal approaches to promote sustained adherence to lifestyle and bodyweight recommendations in postmenopausal breast cancer (PMBC) survivors are lacking.PurposeThis Delphi-study aims to identify and understand expert-opinion on potential barriers and facilitators for promoting adherence to these lifestyle and bodyweight recommendations in (clinical) care for PMBC survivors, and to determine potential effective intervention strategies.MethodsThe expert panel consisted of oncology Health Care Professionals (HCPs) (N = 57), patient advocates (N = 5), and PMBC survivors (N = 38). They completed three questionnaires: Q1—idea generation; Q2—validation and prioritization; Q3—ranking. The Behavior Change Wheel was used as theoretical framework for analysis. Thematic analysis was applied to identify key overarching themes based on the top-ranked facilitators and barriers. Potential Behavior Change Techniques (BCTs) and intervention strategies were identified using the Behavior Change Technique Taxonomy version 1 and the Behavior Change Wheel.ResultsEleven core categories of key barriers/facilitators for the promotion of adherence to recommendations for lifestyle and bodyweight among PMBC survivors were identified. For each core category, relevant BCTs and practical potential intervention strategies were selected based on suggestions from the expert panel. These included: increasing knowledge about the link between lifestyle and cancer; enabling self-monitoring of lifestyle behaviors followed by evaluation; offering group lifestyle counseling for PMBC survivors, enhancing social support for favorable lifestyle behaviors; and stimulating multidisciplinary collaboration among HCPs.ConclusionsFindings provide valuable insight for the development of interventions changing behavior of PMBC survivors and HCPs toward increased healthy lifestyle (support) behavior

    Characterisation of tumour microenvironment remodelling following oncogene inhibition in preclinical studies with imaging mass cytometry.

    Get PDF
    Mouse models are critical in pre-clinical studies of cancer therapy, allowing dissection of mechanisms through chemical and genetic manipulations that are not feasible in the clinical setting. In studies of the tumour microenvironment (TME), multiplexed imaging methods can provide a rich source of information. However, the application of such technologies in mouse tissues is still in its infancy. Here we present a workflow for studying the TME using imaging mass cytometry with a panel of 27 antibodies on frozen mouse tissues. We optimise and validate image segmentation strategies and automate the process in a Nextflow-based pipeline (imcyto) that is scalable and portable, allowing for parallelised segmentation of large multi-image datasets. With these methods we interrogate the remodelling of the TME induced by a KRAS G12C inhibitor in an immune competent mouse orthotopic lung cancer model, highlighting the infiltration and activation of antigen presenting cells and effector cells

    Characterisation of tumour microenvironment remodelling following oncogene inhibition in preclinical studies with imaging mass cytometry

    Get PDF
    Mouse models are critical in pre-clinical studies of cancer therapy, allowing dissection of mechanisms through chemical and genetic manipulations that are not feasible in the clinical setting. In studies of the tumour microenvironment (TME), multiplexed imaging methods can provide a rich source of information. However, the application of such technologies in mouse tissues is still in its infancy. Here we present a workflow for studying the TME using imaging mass cytometry with a panel of 27 antibodies on frozen mouse tissues. We optimise and validate image segmentation strategies and automate the process in a Nextflow-based pipeline (imcyto) that is scalable and portable, allowing for parallelised segmentation of large multi-image datasets. With these methods we interrogate the remodelling of the TME induced by a KRAS G12C inhibitor in an immune competent mouse orthotopic lung cancer model, highlighting the infiltration and activation of antigen presenting cells and effector cells

    Formalin Fixation at Low Temperature Better Preserves Nucleic Acid Integrity

    Get PDF
    Fixation with formalin, a widely adopted procedure to preserve tissue samples, leads to extensive degradation of nucleic acids and thereby compromises procedures like microarray-based gene expression profiling. We hypothesized that RNA fragmentation is caused by activation of RNAses during the interval between formalin penetration and tissue fixation. To prevent RNAse activation, a series of tissue samples were kept under-vacuum at 4°C until fixation and then fixed at 4°C, for 24 hours, in formalin followed by 4 hours in ethanol 95%. This cold-fixation (CF) procedure preserved DNA and RNA, so that RNA segments up to 660 bp were efficiently amplified. Histological and immunohistochemical features were fully comparable with those of standard fixation. Microarray-based gene expression profiles were comparable with those obtained on matched frozen samples for probes hybridizing within 700 bases from the reverse transcription start site. In conclusion, CF preserves tissues and nucleic acids, enabling reliable gene expression profiling of fixed tissues

    Biospecimen Reporting for Improved Study Quality

    Full text link
    Human biospecimens are subject to a number of different collection, processing, and storage factors that can significantly alter their molecular composition and consistency. These biospecimen preanalytical factors, in turn, influence experimental outcomes and the ability to reproduce scientific results. Currently, the extent and type of information specific to the biospecimen preanalytical conditions reported in scientific publications and regulatory submissions varies widely. To improve the quality of research utilizing human tissues, it is critical that information regarding the handling of biospecimens be reported in a thorough, accurate, and standardized manner. The Biospecimen Reporting for Improved Study Quality recommendations outlined herein are intended to apply to any study in which human biospecimens are used. The purpose of reporting these details is to supply others, from researchers to regulators, with more consistent and standardized information to better evaluate, interpret, compare, and reproduce the experimental results. The Biospecimen Reporting for Improved Study Quality guidelines are proposed as an important and timely resource tool to strengthen communication and publications around biospecimen-related research and help reassure patient contributors and the advocacy community that the contributions are valued and respected.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/90474/1/bio-2E2010-2E0036.pd
    • …
    corecore