2,712 research outputs found

    The circumstellar envelope of AFGL 4106

    Get PDF
    We present new imaging and spectroscopy of the post-red supergiant binary AFGL 4106. Coronographic imaging in H-alpha reveals the shape and extent of the ionized region in the circumstellar envelope (CSE). Echelle spectroscopy with the slit covering almost the entire extent of the CSE is used to derive the physical conditions in the ionized region and the optical depth of the dust contained within the CSE. The dust shell around AFGL 4106 is clumpy and mixed with ionized gas. H-alpha and [N II] emission is brightest from a thin bow-shaped layer just outside of the detached dust shell. On-going mass loss is traced by [Ca II] emission and blue-shifted absorption in lines of low-ionization species. A simple model is used to interpret the spatial distribution of the circumstellar extinction and the dust emission in a consistent way.Comment: 10 pages, 11 figures. Accepted for publication in Astronomy & Astrophysics Main Journa

    Three-micron spectra of AGB stars and supergiants in nearby galaxies

    Get PDF
    The dependence of stellar molecular bands on the metallicity is studied using infrared L-band spectra of AGB stars (both carbon-rich and oxygen-rich) and M-type supergiants in the Large and Small Magellanic Clouds (LMC and SMC) and in the Sagittarius Dwarf Spheroidal Galaxy. The spectra cover SiO bands for oxygen-rich stars, and acetylene (C2H2), CH and HCN bands for carbon-rich AGB stars. The equivalent width of acetylene is found to be high even at low metallicity. The high C2H2 abundance can be explained with a high carbon-to-oxygen (C/O) ratio for lower metallicity carbon stars. In contrast, the HCN equivalent width is low: fewer than half of the extra-galactic carbon stars show the 3.5micron HCN band, and only a few LMC stars show high HCN equivalent width. HCN abundances are limited by both nitrogen and carbon elemental abundances. The amount of synthesized nitrogen depends on the initial mass, and stars with high luminosity (i.e. high initial mass) could have a high HCN abundance. CH bands are found in both the extra-galactic and Galactic carbon stars. None of the oxygen-rich LMC stars show SiO bands, except one possible detection in a low quality spectrum. The limits on the equivalent widths of the SiO bands are below the expectation of up to 30angstrom for LMC metallicity. Several possible explanations are discussed. The observations imply that LMC and SMC carbon stars could reach mass-loss rates as high as their Galactic counterparts, because there are more carbon atoms available and more carbonaceous dust can be formed. On the other hand, the lack of SiO suggests less dust and lower mass-loss rates in low-metallicity oxygen-rich stars. The effect on the ISM dust enrichment is discussed.Comment: accepted for A&

    A Spitzer IRAC Census of the Asymptotic Giant Branch Populations in Local Group Dwarfs. II. IC 1613

    Full text link
    We present Spitzer Space Telescope IRAC photometry of the Local Group dwarf irregular galaxy IC 1613. We compare our 3.6, 4.5, 5.8, and 8.0 micron photometry with broadband optical photometry and find that the optical data do not detect 43% and misidentify an additional 11% of the total AGB population, likely because of extinction caused by circumstellar material. Further, we find that a narrowband optical carbon star study of IC 1613 detects 50% of the total AGB population and only considers 18% of this population in calculating the carbon to M-type AGB ratio. We derive an integrated mass-loss rate from the AGB stars of 0.2-1.0 x 10^(-3) solar masses per year and find that the distribution of bolometric luminosities and mass-loss rates are consistent with those for other nearby metal-poor galaxies. Both the optical completeness fractions and mass-loss rates in IC 1613 are very similar to those in the Local Group dwarf irregular, WLM, which is expected given their similar characteristics and evolutionary histories.Comment: Accepted by ApJ, 26 pages, 10 figures, version with high-resolution figures available at: http://webusers.astro.umn.edu/~djackson

    Discovery of long-period variable stars in the very-metal-poor globular cluster M15

    Full text link
    We present a search for long-period variable (LPV) stars among giant branch stars in M15 which, at [Fe/H] ~ -2.3, is one of the most metal-poor Galactic globular clusters. We use multi-colour optical photometry from the 0.6-m Keele Thornton and 2-m Liverpool Telescopes. Variability of delta-V ~ 0.15 mag is detected in K757 and K825 over unusually-long timescales of nearly a year, making them the most metal-poor LPVs found in a Galactic globular cluster. K825 is placed on the long secondary period sequence, identified for metal-rich LPVs, though no primary period is detectable. We discuss this variability in the context of dust production and stellar evolution at low metallicity, using additional spectra from the 6.5-m Magellan (Las Campanas) telescope. A lack of dust production, despite the presence of gaseous mass loss raises questions about the production of dust and the intra-cluster medium of this cluster.Comment: 13 pages, 9 figures, accepted by MNRA

    The M33 Variable Star Population Revealed by Spitzer

    Full text link
    We analyze five epochs of Spitzer Space Telescope/Infrared Array Camera (IRAC) observations of the nearby spiral galaxy M33. Each epoch covered nearly a square degree at 3.6, 4.5, and 8.0 microns. The point source catalog from the full dataset contains 37,650 stars. The stars have luminosities characteristic of the asymptotic giant branch and can be separated into oxygen-rich and carbon-rich populations by their [3.6] - [4.5] colors. The [3.6] - [8.0] colors indicate that over 80% of the stars detected at 8.0 microns have dust shells. Photometric comparison of epochs using conservative criteria yields a catalog of 2,923 variable stars. These variables are most likely long-period variables amidst an evolved stellar population. At least one-third of the identified carbon stars are variable.Comment: Accepted for publication in ApJ. See published article for full resolution figures and electronic table

    Spitzer SAGE-SMC Infrared Photometry of Massive Stars in the Small Magellanic Cloud

    Get PDF
    We present a catalog of 5324 massive stars in the Small Magellanic Cloud (SMC), with accurate spectral types compiled from the literature, and a photometric catalog for a subset of 3654 of these stars, with the goal of exploring their infrared properties. The photometric catalog consists of stars with infrared counterparts in the Spitzer, SAGE-SMC survey database, for which we present uniform photometry from 0.3-24 um in the UBVIJHKs+IRAC+MIPS24 bands. We compare the color magnitude diagrams and color-color diagrams to those of the Large Magellanic Cloud (LMC), finding that the brightest infrared sources in the SMC are also the red supergiants, supergiant B[e] (sgB[e]) stars, luminous blue variables, and Wolf-Rayet stars, with the latter exhibiting less infrared excess, the red supergiants being less dusty and the sgB[e] stars being on average less luminous. Among the objects detected at 24 um are a few very luminous hypergiants, 4 B-type stars with peculiar, flat spectral energy distributions, and all 3 known luminous blue variables. We detect a distinct Be star sequence, displaced to the red, and suggest a novel method of confirming Be star candidates photometrically. We find a higher fraction of Oe and Be stars among O and early-B stars in the SMC, respectively, when compared to the LMC, and that the SMC Be stars occur at higher luminosities. We estimate mass-loss rates for the red supergiants, confirming the correlation with luminosity even at the metallicity of the SMC. Finally, we confirm the new class of stars displaying composite A & F type spectra, the sgB[e] nature of 2dFS1804 and find the F0 supergiant 2dFS3528 to be a candidate luminous blue variable with cold dust.Comment: 23 pages, 17 figures, 5 tables, accepted for publication in the Astronomical Journa

    Potato breeding in the Netherlands: successful collaboration between farmers and commercial breeders.

    Get PDF
    Access and benefit sharing of plant genetic resources is a crucial but very complex, political and legalistic matter. Does the formal system work for family farmers? As we see in this special issue of Farming Matters, co-produced with Bioversity International, it poses many challenges and Farmers' Rights are rarely implemented in national law. At the same time, farmers around the world are leading successful initiatives for access and benefit sharing. In this special issue of Farming Matters also an article of the Bioimpuls potato breeding project was included: In the Netherlands a new PPB initiative called BioImpuls emerged in 2010, which engages organic potato farmers in a search to develop late blight-resistant vari-eties for the organic sector.

    Stellar Populations and Mass-Loss in M15: A Spitzer Detection of Dust in the Intra-Cluster Medium

    Get PDF
    We present Spitzer Space Telescope IRAC and MIPS observations of the galactic globular cluster M15 (NGC 7078), one of the most metal-poor clusters with a [Fe/H] = -2.4. Our Spitzer images reveal a population of dusty red giants near the cluster center, a previously detected planetary nebula (PN) designated K648, and a possible detection of the intra-cluster medium (ICM) arising from mass loss episodes from the evolved stellar population. Our analysis suggests 9 (+/-2) x 10^-4 solar masses of dust is present in the core of M15, and this material has accumulated over a period of approximately 10^6 years, a timescale ten times shorter than the last galactic plane crossing event. We also present Spitzer IRS follow up observations of K648, including the detection of the [NeII] 12.81 micron line, and discuss abundances derived from infrared fine structure lines.Comment: Accepted for publication in AJ. 20 pages, 10 figures, 6 tables. Full resolution versions of figures 1, 5, 7, and 8 are available in a PDF version of this manuscript at http://ir.astro.umn.edu/~mboyer/ms_060906.pd

    Gravity effects on a gliding arc in four noble gases: from normal to hypergravity

    Get PDF
    A gliding arc in four noble gases (He, Ne, Ar, Kr) has been studied under previously unexplored conditions of varying artifiial gravity, from normal 1 g gravity up to 18 g hypergravity. Signifiant differences, mainly the visual thickness of the plasma channel, its maximum elongation and general sensitivity to hypergravity conditions, were observed between the discharges in individual gases, resulting from their different atomic weights and related quantities, such as heat conductivity or ionisation potential. Generally, an increase of the artifiial gravity level leads to a faster plasma channel movement thanks to stronger buoyant force and a decrease of maximum height reached by the channel due to more intense losses of heat and reactive species. In relation to this, an increase in current and a decrease in absorbed power was observed
    corecore