146 research outputs found

    The Hipparcos parallax for Polaris

    Full text link
    This letter follows a recent claim that the Hipparcos parallax for Polaris could be too small by 2.5 mas. It examines in detail the Hipparcos epoch astrometric data for Polaris, as well as the viability of other observations that were put forward to support a larger parallax. The Hipparcos determination of the Polaris parallax is shown to be sufficiently robust to fully exclude a significantly larger parallax, and there is no observational support from other observations, such as a supposed presence of a cluster, either.Comment: 3 pages, 6 figures, Accepted for publication by A&

    Cepheid Parallaxes and the Hubble Constant

    Full text link
    Revised Hipparcos parallaxes for classical Cepheids are analysed together with 10 HST-based parallaxes (Benedict et al.). In a reddening-free V,I relation we find that the coefficient of logP is the same within the uncertainties in our Galaxy as in the LMC, contrary to some previous suggestions. Cepheids in the inner region of NGC4258 with near solar metallicities (Macri et al.) confirm this result. We obtain a zero-point for the reddening-free relation and apply it to Cepheids in galaxies used by Sandage et al. to calibrate the absolute magnitudes of SNIa and to derive the Hubble constant. We revise their result from 62 to 70+/-5 km/s/Mpc. The Freedman et al. 2001 value is revised from 72 to 76+/-8 km/s/Mpc. These results are insensitive to Cepheid metallicity corrections. The Cepheids in the inner region of NGC4258 yield a modulus of 29.22+/-0.03(int) compared with a maser-based modulus of 29.29+/-0.15. Distance moduli for the LMC, uncorrected for any metallicity effects, are; 18.52+/-0.03 from a reddening-free relation in V,I; 18.47+/-0.03 from a period-luminosity relation at K; 18.45+/-0.04 from a period-luminosity-colour relation in J,K. Adopting a metallicity correction in V,I from Marci et al. leads to a true LMC modulus of 18.39+/-0.05.Comment: 9 pages, 1 figure, on-line material from [email protected]. Accepted for MNRA

    Impact of basic angle variations on the parallax zero point for a scanning astrometric satellite

    Full text link
    Determination of absolute parallaxes by means of a scanning astrometric satellite such as Hipparcos or Gaia relies on the short-term stability of the so-called basic angle between the two viewing directions. Uncalibrated variations of the basic angle may produce systematic errors in the computed parallaxes. We examine the coupling between a global parallax shift and specific variations of the basic angle, namely those related to the satellite attitude with respect to the Sun. The changes in observables produced by small perturbations of the basic angle, attitude, and parallaxes are calculated analytically. We then look for a combination of perturbations that has no net effect on the observables. In the approximation of infinitely small fields of view, it is shown that certain perturbations of the basic angle are observationally indistinguishable from a global shift of the parallaxes. If such perturbations exist, they cannot be calibrated from the astrometric observations but will produce a global parallax bias. Numerical simulations of the astrometric solution, using both direct and iterative methods, confirm this theoretical result. For a given amplitude of the basic angle perturbation, the parallax bias is smaller for a larger basic angle and a larger solar aspect angle. In both these respects Gaia has a more favourable geometry than Hipparcos. In the case of Gaia, internal metrology is used to monitor basic angle variations. Additionally, Gaia has the advantage of detecting numerous quasars, which can be used to verify the parallax zero point.Comment: 8 pages, 2 figures; Accepted for publication in Astronomy & Astrophysic

    AGB Variables and the Mira Period-Luminosity Relation

    Full text link
    Published data for large amplitude asymptotic giant branch variables in the Large Magellanic Cloud are re-analysed to establish the constants for an infrared (K) period-luminosity relation of the form: Mk=rho[log P-2.38] + delta. A slope of rho=-3.51+/-0.20 and a zero point of delta=-7.15+/-0.06 are found for oxygen-rich Miras (if a distance modulus of 18.39+/-0.05 is used for the LMC). Assuming this slope is applicable to Galactic Miras we discuss the zero-point for these stars using the revised Hipparcos parallaxes together with published VLBI parallaxes for OH Masers and Miras in Globular Clusters. These result in a mean zero-point of delta=-7.25+/-0.07 for O-rich Galactic Miras. The zero-point for Miras in the Galactic Bulge is not significantly different from this value. Carbon-rich stars are also discussed and provide results that are consistent with the above numbers, but with higher uncertainties. Within the uncertainties there is no evidence for a significant difference between the period-luminosity relation zero-points for systems with different metallicity.Comment: 15 pages, 3 figures, accepted for MNRA

    The fast transient sky with Gaia

    Get PDF
    The ESA Gaia satellite scans the whole sky with a temporal sampling ranging from seconds and hours to months. Each time a source passes within the Gaia field of view, it moves over 10 CCDs in 45 s and a lightcurve with 4.5 s sampling (the crossing time per CCD) is registered. Given that the 4.5 s sampling represents a virtually unexplored parameter space in optical time domain astronomy, this data set potentially provides a unique opportunity to open up the fast transient sky. We present a method to start mining the wealth of information in the per CCD Gaia data. We perform extensive data filtering to eliminate known on-board and data processing artefacts, and present a statistical method to identify sources that show transient brightness variations on ~2 hours timescales. We illustrate that by using the Gaia photometric CCD measurements, we can detect transient brightness variations down to an amplitude of 0.3 mag on timescales ranging from 15 seconds to several hours. We search an area of ~23.5 square degrees on the sky, and find four strong candidate fast transients. Two candidates are tentatively classified as flares on M-dwarf stars, while one is probably a flare on a giant star and one potentially a flare on a solar type star. These classifications are based on archival data and the timescales involved. We argue that the method presented here can be added to the existing Gaia Science Alerts infrastructure for the near real-time public dissemination of fast transient events.Comment: 10 pages, 5 figures and 5 tables; MNRAS in pres

    A spectral atlas of post-main-sequence stars in omega Centauri: kinematics, evolution, enrichment and interstellar medium

    Full text link
    We present a spectral atlas of the post-main-sequence population of the most massive Galactic globular cluster, omega Centauri. Spectra were obtained of more than 1500 stars selected as uniformly as possible from across the (B, B-V) colour-magnitude diagram of the proper motion cluster member candidates of van Leeuwen et al. (2000). The spectra were obtained with the 2dF multi-fibre spectrograph at the Anglo Australian Telescope, and cover the approximate range lambda~3840-4940 Angstroem. We measure the radial velocities, effective temperatures, metallicities and surface gravities by fitting ATLAS9 stellar atmosphere models. We analyse the cluster membership and stellar kinematics, interstellar absorption in the Ca II K line at 3933 Angstroem, the RR Lyrae instability strip and the extreme horizontal branch, the metallicity spread and bimodal CN abundance distribution of red giants, nitrogen and s-process enrichment, carbon stars, pulsation-induced Balmer line emission on the asymptotic giant branch (AGB), and the nature of the post-AGB and UV-bright stars. Membership is confirmed for the vast majority of stars, and the radial velocities clearly show the rotation of the cluster core. We identify long-period RR Lyrae-type variables with low gravity, and low-amplitude variables coinciding with warm RR Lyrae stars. A barium enhancement in the coolest red giants indicates that 3rd dredge-up operates in AGB stars in omega Cen. This is distinguished from the pre-enrichment by more massive AGB stars, which is also seen in our data. The properties of the AGB, post-AGB and UV-bright stars suggest that RGB mass loss may be less efficient at very low metallicity, [Fe/H]<<-1, increasing the importance of mass loss on the AGB. The catalogue and spectra are made available via CDS.Comment: accepted for publication in MNRA

    Fiber Optic Spectroscopy for the Optimization of Photodynamic Therapy

    Get PDF
    __Abstract__ Photodynamic therapy (PDT) is a treatment modality for cancer and premalignant lesions that utilizes a photoactive drug, the photosensitizer, in combination with light. PDT has become the treatment of choice for various malignancies. Furthermore, PDT is under investigation as a potential (palliative) treatment in situations where the possibilities of chemo-­ and radiotherapy are limited or exhausted. Since both photosensitizer and light have to be present to cause tissue damage, selective damage to the lesion can be achieved by controlling the presence of either one of them to the treatment area. Selective damage can be reached by i) choosing a photosensitizer that is mainly present in the lesion, or ii) preventing normal tissue from being illuminated. However, the success of PDT in reducing/removing (pre-­‐)malignant lesions has been variable. Treatment efficacy can range form non-‐observable effects to severe damage to normal tissue. Considering the complexity of both the execution of the treatment and damage pathways involved in PDT, some variability in treatment efficacy is not unexpected. However, given the fact that clinical applications of PDT that have proved successful remain small in number, more work is necessary to optimize therapeutic efficacy
    corecore