2,082 research outputs found

    Dark matter density profiles: A comparison of nonextensive theory with N-body simulations

    Full text link
    Density profiles of simulated galaxy cluster-sized dark matter haloes are analysed in the context of a recently introduced nonextensive theory of dark matter and gas density distributions. Nonextensive statistics accounts for long-range interactions in gravitationally coupled systems and is derived from the fundamental concept of entropy generalisation. The simulated profiles are determined down to radii of ~1% of R_200. The general trend of the relaxed, spherically averaged profiles is accurately reproduced by the theory. For the main free parameter kappa, measuring the degree of coupling within the system, and linked to physical quantities as the heat capacity and the polytropic index of the self-gravitating ensembles, we find a value of -15. The significant advantage over empirical fitting functions is provided by the physical content of the nonextensive approach.Comment: 6 pages, 3 figures, accepted for publication in A&

    Generalized Fokker-Planck equation, Brownian motion, and ergodicity

    Full text link
    Microscopic theory of Brownian motion of a particle of mass MM in a bath of molecules of mass mMm\ll M is considered beyond lowest order in the mass ratio m/Mm/M. The corresponding Langevin equation contains nonlinear corrections to the dissipative force, and the generalized Fokker-Planck equation involves derivatives of order higher than two. These equations are derived from first principles with coefficients expressed in terms of correlation functions of microscopic force on the particle. The coefficients are evaluated explicitly for a generalized Rayleigh model with a finite time of molecule-particle collisions. In the limit of a low-density bath, we recover the results obtained previously for a model with instantaneous binary collisions. In general case, the equations contain additional corrections, quadratic in bath density, originating from a finite collision time. These corrections survive to order (m/M)2(m/M)^2 and are found to make the stationary distribution non-Maxwellian. Some relevant numerical simulations are also presented

    Non-universal dynamics of dimer growing interfaces

    Full text link
    A finite temperature version of body-centered solid-on-solid growth models involving attachment and detachment of dimers is discussed in 1+1 dimensions. The dynamic exponent of the growing interface is studied numerically via the spectrum gap of the underlying evolution operator. The finite size scaling of the latter is found to be affected by a standard surface tension term on which the growth rates depend. This non-universal aspect is also corroborated by the growth behavior observed in large scale simulations. By contrast, the roughening exponent remains robust over wide temperature ranges.Comment: 11 pages, 7 figures. v2 with some slight correction

    Poisson-noise induced escape from a metastable state

    Full text link
    We provide a complete solution of the problems of the probability distribution and the escape rate in Poisson-noise driven systems. It includes both the exponents and the prefactors. The analysis refers to an overdamped particle in a potential well. The results apply for an arbitrary average rate of noise pulses, from slow pulse rates, where the noise acts on the system as strongly non-Gaussian, to high pulse rates, where the noise acts as effectively Gaussian

    Validation of the Jarzynski relation for a system with strong thermal coupling: an isothermal ideal gas model

    Get PDF
    We revisit the paradigm of an ideal gas under isothermal conditions. A moving piston performs work on an ideal gas in a container that is strongly coupled to a heat reservoir. The thermal coupling is modeled by stochastic scattering at the boundaries. In contrast to recent studies of an adiabatic ideal gas with a piston [R.C. Lua and A.Y. Grosberg, J. Phys. Chem. B 109, 6805 (2005); I. Bena et al., Europhys. Lett. 71, 879 (2005)], the container and piston stay in contact with the heat bath during the work process. Under this condition the heat reservoir as well as the system depend on the work parameter lambda and microscopic reversibility is broken for a moving piston. Our model is thus not included in the class of systems for which the nonequilibrium work theorem has been derived rigorously either by Hamiltonian [C. Jarzynski, J. Stat. Mech. (2004) P09005] or stochastic methods [G.E. Crooks, J. Stat. Phys. 90, 1481 (1998)]. Nevertheless the validity of the nonequilibrium work theorem is confirmed both numerically for a wide range of parameter values and analytically in the limit of a very fast moving piston, i.e., in the far nonequilibrium regime

    Diffusion at constant speed in a model phase space

    Full text link
    We reconsider the problem of diffusion of particles at constant speed and present a generalization of the Telegrapher process to higher dimensional stochastic media (d>1d>1), where the particle can move along 2d2^d directions. We derive the equations for the probability density function using the ``formulae of differentiation'' of Shapiro and Loginov. The model is an advancement over similiar models of photon migration in multiply scattering media in that it results in a true diffusion at constant speed in the limit of large dimensions.Comment: Final corrected version RevTeX, 6 pages, 1 figur

    Evolution equation for a model of surface relaxation in complex networks

    Full text link
    In this paper we derive analytically the evolution equation of the interface for a model of surface growth with relaxation to the minimum (SRM) in complex networks. We were inspired by the disagreement between the scaling results of the steady state of the fluctuations between the discrete SRM model and the Edward-Wilkinson process found in scale-free networks with degree distribution P(k)kλ P(k) \sim k^{-\lambda} for λ<3\lambda <3 [Pastore y Piontti {\it et al.}, Phys. Rev. E {\bf 76}, 046117 (2007)]. Even though for Euclidean lattices the evolution equation is linear, we find that in complex heterogeneous networks non-linear terms appear due to the heterogeneity and the lack of symmetry of the network; they produce a logarithmic divergency of the saturation roughness with the system size as found by Pastore y Piontti {\it et al.} for λ<3\lambda <3.Comment: 9 pages, 2 figure

    Generalised Ornstein-Uhlenbeck processes

    Full text link
    We solve a physically significant extension of a classic problem in the theory of diffusion, namely the Ornstein-Uhlenbeck process [G. E. Ornstein and L. S. Uhlenbeck, Phys. Rev. 36, 823, (1930)]. Our generalised Ornstein-Uhlenbeck systems include a force which depends upon the position of the particle, as well as upon time. They exhibit anomalous diffusion at short times, and non-Maxwellian velocity distributions in equilibrium. Two approaches are used. Some statistics are obtained from a closed-form expression for the propagator of the Fokker-Planck equation for the case where the particle is initially at rest. In the general case we use spectral decomposition of a Fokker-Planck equation, employing nonlinear creation and annihilation operators to generate the spectrum which consists of two staggered ladders.Comment: 24 pages, 2 figure

    Analytically solvable model of a driven system with quenched dichotomous disorder

    Full text link
    We perform a time-dependent study of the driven dynamics of overdamped particles which are placed in a one-dimensional, piecewise linear random potential. This set-up of spatially quenched disorder then exerts a dichotomous varying random force on the particles. We derive the path integral representation of the resulting probability density function for the position of the particles and transform this quantity of interest into the form of a Fourier integral. In doing so, the evolution of the probability density can be investigated analytically for finite times. It is demonstrated that the probability density contains both a δ\delta-singular contribution and a regular part. While the former part plays a dominant role at short times, the latter rules the behavior at large evolution times. The slow approach of the probability density to a limiting Gaussian form as time tends to infinity is elucidated in detail.Comment: 18 pages, 5 figure
    corecore