1,238 research outputs found

    A Herschel study of Planetary Nebulae

    Full text link
    We present Herschel PACS and SPIRE images of the dust shells around the planetary nebulae NGC 650, NGC 6853, and NGC 6720, as well as images showing the dust temperature in their shells. The latter shows a rich structure, which indicates that internal extinction in the UV is important despite the highly evolved status of the nebulae.Comment: 2 pages, 1 figure, 2012, proceedings IAU Symposium 283 Planetary Nebulae: An Eye to the Futur

    Radiative cooling in collisionally and photo ionized plasmas

    Get PDF
    We discuss recent improvements in the calculation of the radiative cooling in both collisionally and photo ionized plasmas. We are extending the spectral simulation code Cloudy so that as much as possible of the underlying atomic data is taken from external databases, some created by others, some developed by the Cloudy team. This paper focuses on recent changes in the treatment of many stages of ionization of iron, and discusses its extensions to other elements. The H-like and He-like ions are treated in the iso-electronic approach described previously. Fe II is a special case treated with a large model atom. Here we focus on Fe III through Fe XXIV, ions which are important contributors to the radiative cooling of hot, 1e5 to 1e7 K, plasmas and for X-ray spectroscopy. We use the Chianti atomic database to greatly expand the number of transitions in the cooling function. Chianti only includes lines that have atomic data computed by sophisticated methods. This limits the line list to lower excitation, longer wavelength, transitions. We had previously included lines from the Opacity Project database, which tends to include higher energy, shorter wavelength, transitions. These were combined with various forms of the g-bar approximation, a highly approximate method of estimating collision rates. For several iron ions the two databases are almost entirely complementary. We adopt a hybrid approach in which we use Chianti where possible, supplemented by lines from the Opacity Project for shorter wavelength transitions. The total cooling including the lightest thirty elements differs significantly from some previous calculations

    What's in a wrap?

    Get PDF

    The very fast evolution of Sakurai's object

    Full text link
    V4334 Sgr (a.k.a. Sakurai's object) is the central star of an old planetary nebula that underwent a very late thermal pulse a few years before its discovery in 1996. We have been monitoring the evolution of the optical emission line spectrum since 2001. The goal is to improve the evolutionary models by constraining them with the temporal evolution of the central star temperature. In addition the high resolution spectral observations obtained by X-shooter and ALMA show the temporal evolution of the different morphological components.Comment: 2 pages, 2 figures to appear in the Proceedings of the IAU Symp. 323: "Planetary nebulae: Multi-wavelength probes of stellar and galactic evolution". Eds. X.-W. Liu, L. Stanghellini and A. Karaka

    Accurate determination of the free-free Gaunt factor. II - relativistic Gaunt factors

    Get PDF
    When modelling an ionised plasma, all spectral synthesis codes need the thermally averaged free-free Gaunt factor defined over a very wide range of parameter space in order to produce an accurate prediction for the spectrum. Until now no data set exists that would meet these needs completely. We have therefore produced a table of relativistic Gaunt factors over a much wider range of parameter space than has ever been produced before. We present tables of the thermally averaged Gaunt factor covering the range log10(gamma^2) = -6 to 10 and log10(u) = -16 to 13 for all atomic numbers Z = 1 through 36. The data were calculated using the relativistic Bethe-Heitler-Elwert (BHE) approximation and were subsequently merged with accurate non-relativistic results in those parts of the parameter space where the BHE approximation is not valid. These data will be incorporated in the next major release of the spectral synthesis code Cloudy. We also produced tables of the frequency integrated Gaunt factor covering the parameter space log10(gamma^2) = -6 to 10 for all values of Z between 1 and 36. All the data presented in this paper are available online.Comment: 8 pages, 8 figures, 2 table

    Expanded Iron UTA spectra -- probing the thermal stability limits in AGN clouds

    Get PDF
    The Fe unresolved transition array (UTAs) produce prominent features in the 15-17?A wavelength range in the spectra of Active Galactic Nuclei (AGN). Here we present new calculations of the energies and oscillator strengths of inner- shell lines from Fe XIV, Fe XV, and Fe XVI. These are crucial ions since they are dominant at inflection points in the gas thermal stability curve, and UTA excitation followed by autoionization is an important ionization mechanism for these species. We incorporate these, and data reported in previous papers, into the plasma simulation code Cloudy. This updated physics is subsequently employed to reconsider the thermally stable phases in absorbing media in Active Galactic Nuclei. We show how the absorption profile of the Fe XIV UTA depends on density, due to the changing populations of levels within the ground configuration.Comment: ApJ in pres

    Unsupervised Heart-rate Estimation in Wearables With Liquid States and A Probabilistic Readout

    Full text link
    Heart-rate estimation is a fundamental feature of modern wearable devices. In this paper we propose a machine intelligent approach for heart-rate estimation from electrocardiogram (ECG) data collected using wearable devices. The novelty of our approach lies in (1) encoding spatio-temporal properties of ECG signals directly into spike train and using this to excite recurrently connected spiking neurons in a Liquid State Machine computation model; (2) a novel learning algorithm; and (3) an intelligently designed unsupervised readout based on Fuzzy c-Means clustering of spike responses from a subset of neurons (Liquid states), selected using particle swarm optimization. Our approach differs from existing works by learning directly from ECG signals (allowing personalization), without requiring costly data annotations. Additionally, our approach can be easily implemented on state-of-the-art spiking-based neuromorphic systems, offering high accuracy, yet significantly low energy footprint, leading to an extended battery life of wearable devices. We validated our approach with CARLsim, a GPU accelerated spiking neural network simulator modeling Izhikevich spiking neurons with Spike Timing Dependent Plasticity (STDP) and homeostatic scaling. A range of subjects are considered from in-house clinical trials and public ECG databases. Results show high accuracy and low energy footprint in heart-rate estimation across subjects with and without cardiac irregularities, signifying the strong potential of this approach to be integrated in future wearable devices.Comment: 51 pages, 12 figures, 6 tables, 95 references. Under submission at Elsevier Neural Network

    Accurate determination of the free-free Gaunt factor; I - non-relativistic Gaunt factors

    Get PDF
    Modern spectral synthesis codes need the thermally averaged free-free Gaunt factor defined over a very wide range of parameter space in order to produce an accurate prediction for the spectrum emitted by an ionized plasma. Until now no set of data exists that would meet this need in a fully satisfactory way. We have therefore undertaken to produce a table of very accurate non-relativistic Gaunt factors over a much wider range of parameters than has ever been produced before. We first produced a table of non-averaged Gaunt factors, covering the parameter space log10(epsilon_i) = -20 to +10 and log10(w) = -30 to +25. We then continued to produce a table of thermally averaged Gaunt factors covering the parameter space log10(gamma^2) = -6 to +10 and log10(u) = -16 to +13. Finally we produced a table of the frequency integrated Gaunt factor covering the parameter space log10(gamma^2) = -6 to +10. All the data presented in this paper are available online.Comment: 10 pages, 5 tables, 3 figures. Fixed typo in Eq. 1

    Current-induced spin-wave excitations in a single ferromagnetic layer

    Full text link
    A new current induced spin-torque transfer effect has been observed in a single ferromagnetic layer without resorting to multilayers. At a specific current density of one polarity injected from a point contact, abrupt resistance changes due to current-induced spin wave excitations have been observed. The critical current at the onset of spin-wave excitations depends linearly on the external field applied perpendicular to the layer. The observed effect is due to current-driven heterogeneity in an otherwise uniform ferromagnetic layer.Comment: 12 pages, 4 figure
    • …
    corecore