3 research outputs found

    Overexpression of AtCpNifS enhances selenium tolerance and accumulation in Arabidopsis

    Get PDF
    Selenium (Se) is an essential element for many organisms but is toxic at higher levels. CpNifS is a chloroplastic NifS-like protein in Arabidopsis (Arabidopsis thaliana) that can catalyze the conversion of cysteine into alanine and elemental sulfur (S 0 ) and of selenocysteine into alanine and elemental Se (Se 0 ). We overexpressed CpNifS to investigate the effects on Se metabolism in plants. CpNifS overexpression significantly enhanced selenate tolerance (1.9-fold) and Se accumulation (2.2-fold). CpNifS overexpressors showed significantly reduced Se incorporation into protein, which may explain their higher Se tolerance. Also, sulfur accumulation was enhanced by approximately 30% in CpNifS overexpressors, both on media with and without selenate. Root transcriptome changes in response to selenate mimicked the effects observed under sulfur starvation. There were only a few transcriptome differences between CpNifS-overexpressing plants and wild type, besides the 25-to 40-fold increase in CpNifS levels. Judged from x-ray analysis of near edge spectrum, both CpNifS overexpressors and wild type accumulated mostly selenate (Se VI ). In conclusion, overexpression of this plant NifS-like protein had a pronounced effect on plant Se metabolism. The observed enhanced Se accumulation and tolerance of CpNifS overexpressors show promise for use in phytoremediation

    The Drosophila cell cycle kinase PAN GU forms an active complex with PLUTONIUM and GNU to regulate embryonic divisions

    No full text
    Early embryonic cell cycles in Drosophila consist of rapidly alternating S and M phases. Three genes, pan gu (png), plutonium (plu), and giant nuclei (gnu) coordinate these early S-M cycles by ensuring adequate Cyclin B protein levels. Mutations in any of these genes result in unregulated DNA replication and a lack of mitosis (“giant nuclei” phenotype). png encodes a serine/threonine protein kinase, and plu and gnu encode small, novel proteins. We show that PNG, PLU, and GNU constitute a novel protein kinase complex that specifically regulates S-M cell cycles. All three proteins are required for PNG kinase activity and are phosphorylated by PNG in vitro. Yeast two-hybrid screening revealed a direct interaction between PNG and PLU, and their co-expression is required for physical association and activation of PNG kinase. Artificial dimerization of PLU via fusion to either GST or FK506 binding protein (in the presence of dimerizing agent) abrogates the requirement for GNU to activate PNG kinase. We propose a model in which GNU normally regulates embryonic cell cycles by promoting transient dimerization of a core PNG/PLU complex, thereby stimulating PNG kinase activity
    corecore