3,715 research outputs found
Evidence for an abundant old population of Galactic ultra long period magnetars and implications for fast radio bursts
Two recent discoveries, namely PSR J0901-4046 and GLEAM-X J162759.5-523504.3
(hereafter GLEAM-X J1627), have corroborated an extant population of radio-loud
periodic sources with long periods (76 s and 1091 s respectively) whose
emission can hardly be explained by rotation losses. We argue that GLEAM-X
J1627 is a highly-magnetized object consistent with a magnetar (an ultra long
period magnetar - ULPM), and demonstrate it is unlikely to be either a
magnetically or a rotationally-powered white dwarf. By studying these sources
together with previously detected objects, we find there are at least a handful
of promising candidates for Galactic ULPMs. The detections of these objects
imply a substantial number, and for PSR
J0901--4046 like and GLEAM-X J1627 like objects, respectively, within our
Galaxy. These source densities, as well as cooling age limits from
non-detection of thermal X-rays, Galactic offsets, timing stability and dipole
spindown limits, all imply the ULPM candidates are substantially older than
confirmed Galactic magnetars and that their formation channel is a common one.
Their existence implies widespread survival of magnetar-like fields for several
Myr, distinct from the inferred behaviour in confirmed Galactic magnetars.
ULPMs may also constitute a second class of FRB progenitors which could
naturally exhibit very long periodic activity windows. Finally, we show that
existing radio campaigns are biased against detecting objects like these and
discuss strategies for future radio and X-ray surveys to identify more such
objects. We estimate that more such objects should be detected
with SKA-MID and DSA-2000.Comment: 22 pages, 10 figures. Published in MNRA
Charge injection instability in perfect insulators
We show that in a macroscopic perfect insulator, charge injection at a
field-enhancing defect is associated with an instability of the insulating
state or with bistability of the insulating and the charged state. The effect
of a nonlinear carrier mobility is emphasized. The formation of the charged
state is governed by two different processes with clearly separated time
scales. First, due to a fast growth of a charge-injection mode, a localized
charge cloud forms near the injecting defect (or contact). Charge injection
stops when the field enhancement is screened below criticality. Secondly, the
charge slowly redistributes in the bulk. The linear instability mechanism and
the final charged steady state are discussed for a simple model and for
cylindrical and spherical geometries. The theory explains an experimentally
observed increase of the critical electric field with decreasing size of the
injecting contact. Numerical results are presented for dc and ac biased
insulators.Comment: Revtex, 7pages, 4 ps figure
Infection with Pythium flevoense in a harbour porpoise (Phocoena phocoena) as a novel cause of dermatitis in marine mammals
The oomycete Pythium flevoense was diagnosed as the cause of dermatitis in a young adult female harbour porpoise (Phocoena phocoena) that had been trapped in a pound net in a temperate saltwater environment. Disease from Pythium sp. infection-pythiosis-is infrequently diagnosed in humans, horses, dogs, cattle, and few other mammalian species. Pythiosis is typically associated with exposure to tropical or subtropical freshwater conditions, and typically caused by Pythium insidiosum. However, until now, pythiosis has been reported in neither marine mammals nor temperate saltwater conditions, and P. flevoense is not known as a cause of pythiosis in mammals. This porpoise developed generalised dermatitis despite treatment and euthanasia was necessary. Histopathological evaluation revealed a chronic active erosive dermatitis, with intralesional hyphae morphologically consistent with a Pythium sp. PCR analysis and sequencing of affected skin matched Pythium flevoense with a 100% similarity to the reference strain. Additional diagnostics excluded other pathogens. Based on this case report, P. flevoense needs to be considered as a mammalian pathogen. Furthermore, harbour porpoises and possibly other marine mammals may be at risk of infection with P. flevoense, and pythiosis should be included in the differential diagnosis of dermatitis in marine mammals.</p
Mass for the graviton
Can we give the graviton a mass? Does it even make sense to speak of a
massive graviton? In this essay I shall answer these questions in the
affirmative. I shall outline an alternative to Einstein Gravity that satisfies
the Equivalence Principle and automatically passes all classical weak-field
tests (GM/r approx 10^{-6}). It also passes medium-field tests (GM/r approx
1/5), but exhibits radically different strong-field behaviour (GM/r approx 1).
Black holes in the usual sense do not exist in this theory, and large-scale
cosmology is divorced from the distribution of matter. To do all this we have
to sacrifice something: the theory exhibits {*prior geometry*}, and depends on
a non-dynamical background metric.Comment: 12 pages, plain LaTeX. Major revisions: (1) Inconsistency in
equations of motion fixed. (2) More discussion of the problems associated
with quantization. (3) Many more references adde
Biodiversity and Ecosystem Function in the Gulf of Maine: Pattern and Role of Zooplankton and Pelagic Nekton
This paper forms part of a broader overview of biodiversity of marine life in the Gulf of Maine area (GoMA), facilitated by the GoMA Census of Marine Life program. It synthesizes current data on species diversity of zooplankton and pelagic nekton, including compilation of observed species and descriptions of seasonal, regional and cross-shelf diversity patterns. Zooplankton diversity in the GoMA is characterized by spatial differences in community composition among the neritic environment, the coastal shelf, and deep offshore waters. Copepod diversity increased with depth on the Scotian Shelf. On the coastal shelf of the western Gulf of Maine, the number of higher-level taxonomic groups declined with distance from shore, reflecting more nearshore meroplankton. Copepod diversity increased in late summer, and interdecadal diversity shifts were observed, including a period of higher diversity in the 1990s. Changes in species diversity were greatest on interannual scales, intermediate on seasonal scales, and smallest across regions, in contrast to abundance patterns, suggesting that zooplankton diversity may be a more sensitive indicator of ecosystem response to interannual climate variation than zooplankton abundance. Local factors such as bathymetry, proximity of the coast, and advection probably drive zooplankton and pelagic nekton diversity patterns in the GoMA, while ocean-basin-scale diversity patterns probably contribute to the increase in diversity at the Scotian Shelf break, a zone of mixing between the cold-temperate community of the shelf and the warm-water community offshore. Pressing research needs include establishment of a comprehensive system for observing change in zooplankton and pelagic nekton diversity, enhanced observations of underknown\u27\u27 but important functional components of the ecosystem, population and metapopulation studies, and development of analytical modeling tools to enhance understanding of diversity patterns and drivers. Ultimately, sustained observations and modeling analysis of biodiversity must be effectively communicated to managers and incorporated into ecosystem approaches for management of GoMA living marine resources
Supramolecular materials: molecular packing of tetranitrotetrapropoxycalix[4]arene in highly stable films with second-order nonlinear optical properties
Highly stable films of tetranitrotetrapropoxycalix[4]arene (9) with second-order nonlinear optical (NLO) properties and a noncentrosymmetric structure were obtained by a novel crystallization process at 130-140 degrees C in a de electric field. The packing of 9 in these films was elucidated by a combination of X-ray diffraction, angle-dependent second- harmonic generation, and scanning force microscopy (SFM). The experimental results agree well with solid-state molecular dynamics calculations for these films. No crystalline phase was observed for nitrocalix[4]arene derivatives with longer or branched alkyl chains; this explains the limited NLO stability of films of these calixarenes. Scanning force microscopy on the aligned films of 9 showed two distinct surface lattice structures: a rectangular lattice (a = 9.3, b = 11.7 Angstrom) and a pseudohexagonal lattice (d approximate to 11.4 Angstrom). The combination of these data with the interlayer distance of 8.9 Angstrom (X-ray diffraction) allowed the packing of molecules of 9 in these structures to be fully elucidated at the molecular level
Good practice in food-related neuroimaging
The use of neuroimaging tools, especially functional magnetic resonance imaging, in nutritional research has increased substantially over the past 2 decades. Neuroimaging is a research tool with great potential impact on the field of nutrition, but to achieve that potential, appropriate use of techniques and interpretation of neuroimaging results is necessary. In this article, we present guidelines for good methodological practice in functional magnetic resonance imaging studies and flag specific limitations in the hope of helping researchers to make the most of neuroimaging tools and avoid potential pitfalls. We highlight specific considerations for food-related studies, such as how to adjust statistically for common confounders, like, for example, hunger state, menstrual phase, and BMI, as well as how to optimally match different types of food stimuli. Finally, we summarize current research needs and future directions, such as the use of prospective designs and more realistic paradigms for studying eating behavior
Bounding the mass of the graviton using gravitional-wave observations of inspiralling compact binaries
If gravitation is propagated by a massive field, then the velocity of
gravitational waves (gravitons) will depend upon their frequency and the
effective Newtonian potential will have a Yukawa form. In the case of
inspiralling compact binaries, gravitational waves emitted at low frequency
early in the inspiral will travel slightly slower than those emitted at high
frequency later, modifying the phase evolution of the observed inspiral
gravitational waveform, similar to that caused by post-Newtonian corrections to
quadrupole phasing. Matched filtering of the waveforms can bound such
frequency-dependent variations in propagation speed, and thereby bound the
graviton mass. The bound depends on the mass of the source and on noise
characteristics of the detector, but is independent of the distance to the
source, except for weak cosmological redshift effects. For observations of
stellar-mass compact inspiral using ground-based interferometers of the
LIGO/VIRGO type, the bound on the graviton Compton wavelength is of the order
of km, about double that from solar-system tests of Yukawa
modifications of Newtonian gravity. For observations of super-massive black
hole binary inspiral at cosmological distances using the proposed laser
interferometer space antenna (LISA), the bound can be as large as km. This is three orders of magnitude weaker than model-dependent
bounds from galactic cluster dynamics.Comment: 8 pages, RevTeX, submitted to Phys. Rev.
Modality-Dependent Impact of Hallucinations on Low-Frequency Fluctuations in Schizophrenia
Prior resting-state functional magnetic resonance imaging (fMRI) analyses have identified patterns of functional connectivity associated with hallucinations in schizophrenia (Sz). In this study, we performed an analysis of the mean amplitude of low-frequency fluctuations (ALFF) to compare resting state spontaneous low-frequency fluctuations in patients with Sz who report experiencing hallucinations impacting different sensory modalities. By exploring dynamics across 2 low-frequency passbands (slow-4 and slow-5), we assessed the impact of hallucination modality and frequency range on spatial ALFF variation. Drawing from a sample of Sz and healthy controls studied as part of the Functional Imaging Biomedical Informatics Research Network (FBIRN), we replicated prior findings showing that patients with Sz have decreased ALFF in the posterior brain in comparison to controls. Remarkably, we found that patients that endorsed visual hallucinations did not show this pattern of reduced ALFF in the back of the brain. These patients also had elevated ALFF in the left hippocampus in comparison to patients that endorsed auditory (but not visual) hallucinations. Moreover, left hippocampal ALFF across all the cases was related to reported hallucination severity in both the auditory and visual domains, and not overall positive symptoms. This supports the hypothesis that dynamic changes in the ALFF in the hippocampus underlie severity of hallucinations that impact different sensory modalities
Universally Coupled Massive Gravity
We derive Einstein's equations from a linear theory in flat space-time using
free-field gauge invariance and universal coupling. The gravitational potential
can be either covariant or contravariant and of almost any density weight. We
adapt these results to yield universally coupled massive variants of Einstein's
equations, yielding two one-parameter families of distinct theories with spin 2
and spin 0. The Freund-Maheshwari-Schonberg theory is therefore not the unique
universally coupled massive generalization of Einstein's theory, although it is
privileged in some respects. The theories we derive are a subset of those found
by Ogievetsky and Polubarinov by other means. The question of positive energy,
which continues to be discussed, might be addressed numerically in spherical
symmetry. We briefly comment on the issue of causality with two observable
metrics and the need for gauge freedom and address some criticisms by
Padmanabhan of field derivations of Einstein-like equations along the way.Comment: Introduction notes resemblance between Einstein's discovery process
and later field/spin 2 project; matches journal versio
- …