424 research outputs found

    Completeness in Photometric and Spectroscopic Searches for Clusters

    Get PDF
    We investigate, using simulated galaxy catalogues, the completeness of searches for massive clusters of galaxies in redshift surveys or imaging surveys with photometric redshift estimates, i.e. what fraction of clusters (M>10^14/h Msun) are found in such surveys. We demonstrate that the matched filter method provides an efficient and reliable means of identifying massive clusters even when the redshift estimates are crude. In true redshift surveys the method works extremely well. We demonstrate that it is possible to construct catalogues with high completeness, low contamination and both varying little with redshift.Comment: ApJ in press, 15 pages, 10 figure

    The Effect of the Cosmic Web on Cluster Weak Lensing Mass Estimates

    Get PDF
    In modern hierarchical theories of structure formation, rich clusters of galaxies form at the vertices of a weblike distribution of matter, with filaments emanating from them to large distances and with smaller objects forming and draining in along these filaments. The amount of mass contained in structure near the cluster can be comparable to the collapsed mass of the cluster itself. As the lensing kernel is quite broad along the line of sight around cluster lenses with typical redshifts near z=0.5, structures many Mpc away from the cluster are essentially at the same location as the cluster itself, when considering their effect on the cluster's weak lensing signal. We use large-scale numerical simulations of structure formation in a Lambda-dominated cold dark matter model to quantify the effect that large-scale structure near clusters has upon the cluster masses deduced from weak lensing analysis. A correction for the scatter in possible observed lensing masses should be included when interpreting mass functions from weak lensing surveys.Comment: 14 pages, 11 figures. LaTeX2e, uses emulateapj.sty and onecolfloat.st

    A Redshift Survey of Nearby Galaxy Groups: the Shape of the Mass Density Profile

    Full text link
    We constrain the mass profile and orbital structure of nearby groups and clusters of galaxies. Our method yields the joint probability distribution of the density slope n, the velocity anisotropy beta, and the turnover radius r0 for these systems. The measurement technique does not use results from N-body simulations as priors. We incorporate 2419 new redshifts in the fields of 41 systems of galaxies with z < 0.04. The new groups have median velocity dispersion sigma=360 km/s. We also use 851 archived redshifts in the fields of 8 nearly relaxed clusters with z < 0.1. Within R < 2 r200, the data are consistent with a single power law matter density distribution with slope n = 1.8-2.2 for systems with sigma < 470 km/s, and n = 1.6-2.0 for those with sigma > 470 km/s (95% confidence). We show that a simple, scale-free phase space distribution function f(E,L^2) ~ (-E)^(alpha-1/2) L^(-2 \beta) is consistent with the data as long as the matter density has a cusp. Using this DF, matter density profiles with constant density cores (n=0) are ruled out with better than 99.7% confidence.Comment: 22 pages; accepted for publication in the Astrophysical Journa

    ROSAT PSPC Observations of the Richest (R≄2R \geq 2) ACO Clusters

    Full text link
    We have compiled an X-ray catalog of optically selected rich clusters of galaxies observed by the PSPC during the pointed GO phase of the ROSAT mission. This paper contains a systematic X-ray analysis of 150 clusters with an optical richness classification of R≄2R \geq 2 from the ACO catalog (Abell, Corwin, and Olowin 1989). All clusters were observed within 45' of the optical axis of the telescope during pointed PSPC observations. For each cluster, we calculate: the net 0.5-2.0 keV PSPC count rate (or 4σ4 \sigma upper limit) in a 1 Mpc radius aperture, 0.5-2.0 keV flux and luminosity, bolometric luminosity, and X-ray centroid. The cluster sample is then used to examine correlations between the X-ray and optical properties of clusters, derive the X-ray luminosity function of clusters with different optical classifications, and obtain a quantitative estimate of contamination (i.e, the fraction of clusters with an optical richness significantly overestimated due to interloping galaxies) in the ACO catalog

    Mass Models and Sunyaev-Zeldovich Effect Predictions for a Flux Limited Sample of 22 Nearby X-Ray Clusters

    Get PDF
    We define a 90% complete, volume-limited sample of 31 z<0.1 x-ray clusters and present a systematic analysis of public ROSAT PSPC data on 22 of these objects. Our efforts are undertaken in support of the Penn/OVRO SZE survey, and to this end we present predictions for the inverse Compton optical depth towards all 22 of these clusters. We have performed detailed Monte Carlo simulations to understand the effects of the cluster profile uncertainties on the SZE predictions given the OVRO 5.5-meter telescope beam and switching patterns; we find that the profile uncertainties are one of the least significant components of our error budget for SZE-based distance measurements. We also present baryonic masses and baryon mass fractions derived under the assumption of hydrostatic equilibrium for these 22 clusters. The mean baryonic mass fraction within R_500 \sim 500 h^-1 kpc is (7.02 \pm 0.28) x 10^-2 h^-3/2, or (19.8 \pm 0.8) x 10^-2 for h=0.5. We confirm the Allen et al. (1993) claim of an excess absorbing column density towards Abell 478, but do not find similar anomalies in the other 21 clusters in our sample. We also find some evidence for an excess of soft counts in the ROSAT PSPC data. A measurement of H_o using these models and OVRO SZE determinations will be presented in a second paper.Comment: 51 pages, 6 figures included in text. Added comparison of different cosmologies; accepted for publication in Ap

    The Las Campanas Distant Cluster Survey -- The Correlation Function

    Get PDF
    We present the first non-local (z>0.2) measurement of the cluster-cluster spatial correlation length, using data from the Las Campanas Distant Cluster Survey (LCDCS). We measure the angular correlation function for velocity-dispersion limited subsamples of the catalog at estimated redshifts of 0.35<z_{est}<0.575, and derive spatial correlation lengths for these clusters via the cosmological Limber equation. The correlation lengths that we measure for clusters in the LCDCS are consistent both with local results for the APM cluster catalog and with theoretical expectations based upon the Virgo Consortium Hubble Volume simulations and the analytic predictions. Despite samples containing over 100 clusters, our ability to discriminate between cosmological models is limited because of statistical uncertainty.Comment: 7 pages, 4 figures, accepted to ApJ (v571, May 20, 2002

    Correlation length of X-ray brightest Abell clusters

    Get PDF
    We compute the cluster auto-correlation function Οcc(r)\xi_{cc}(r) of an X-ray flux limited sample of Abell clusters (XBACs, \cite{ebe}). For the total XBACs sample we find a power-law fit Οcc=(r/r0)Îł\xi_{cc}=(r/r_0)^{\gamma} with r0=21.1r_0=21.1 Mpc h−1^{-1}and Îł=−1.9\gamma =-1.9 consistent with the results of R≄1R \ge 1 Abell clusters. We also analyze Οcc(r)\xi_{cc}(r) for subsamples defined by different X-ray luminosity thresholds where we find a weak tendency of larger values of r0r_0 with increasing X-ray luminosity although with a low statistical significance. In the different subsamples analyzed we find 21<r0<3521 < r_0 < 35 Mpc h−1^{-1} and −1.9<Îł<−1.6-1.9< \gamma < -1.6. Our analysis suggests that cluster X-ray luminosities may be used for a reliable confrontation of cluster spatial distribution properties in models and observations.Comment: Accepted for publication in Astrophysical Journa
    • 

    corecore