17 research outputs found

    Novel Druggable Hot Spots in Avian Influenza Neuraminidase H5N1 Revealed by Computational Solvent Mapping of a Reduced and Representative Receptor Ensemble

    Get PDF
    The influenza virus subtype H5N1 has raised concerns of a possible human pandemic threat because of its high virulence and mutation rate. Although several approved anti-influenza drugs effectively target the neuraminidase, some strains have already acquired resistance to the currently available anti-influenza drugs. In this study, we present the synergistic application of extended explicit solvent molecular dynamics (MD) and computational solvent mapping (CS-Map) to identify putative ‘hot spots’ within flexible binding regions of N1 neuraminidase. Using representative conformations of the N1 binding region extracted from a clustering analysis of four concatenated 40-ns MD simulations, CS-Map was utilized to assess the ability of small, solvent-sized molecules to bind within close proximity to the sialic acid binding region. Mapping analyses of the dominant MD conformations reveal the presence of additional hot spot regions in the 150- and 430-loop regions. Our hot spot analysis provides further support for the feasibility of developing high-affinity inhibitors capable of binding these regions, which appear to be unique to the N1 strain

    Constructing a climate change logic: An institutional perspective on the "tragedy of the commons"

    Get PDF
    Despite increasing interest in transnational fields, transnational commons have received little attention. In contrast to economic models of commons, which argue that commons occur naturally and are prone to collective inaction and tragedy, we introduce a social constructionist account of commons. Specifically, we show that actor-level frame changes can eventually lead to the emergence of an overarching, hybrid "commons logic" at the field level. These frame shifts enable actors with different logics to reach a working consensus and avoid "tragedies of the commons." Using a longitudinal analysis of key actors' logics and frames, we tracked the evolution of the global climate change field over 40 years. We bracketed time periods demarcated by key field-configuring events, documented the different frame shifts in each time period, and identified five mechanisms (collective theorizing, issue linkage, active learning, legitimacy seeking, and catalytic amplification) that underpin how and why actors changed their frames at various points in time-enabling them to move toward greater consensus around a transnational commons logic. In conclusion, the emergence of a commons logic in a transnational field is a nonlinear process and involves satisfying three conditions: (1) key actors view their fates as being interconnected with respect to a problem issue, (2) these actors perceive their own behavior as contributing to the problem, and (3) they take collective action to address the problem. Our findings provide insights for multinational companies, nation-states, nongovernmental organizations, and other stakeholders in both conventional and unconventional commons

    Methionine Sulfoxides on Prion Protein Helix-3 Switch on the α-Fold Destabilization Required for Conversion

    Get PDF
    BACKGROUND: The conversion of the cellular prion protein (PrP(C)) into the infectious form (PrP(Sc)) is the key event in prion induced neurodegenerations. This process is believed to involve a multi-step conformational transition from an alpha-helical (PrP(C)) form to a beta-sheet-rich (PrP(Sc)) state. In addition to the conformational difference, PrP(Sc) exhibits as covalent signature the sulfoxidation of M213. To investigate whether such modification may play a role in the misfolding process we have studied the impact of methionine oxidation on the dynamics and energetics of the HuPrP(125-229) alpha-fold. METHODOLOGY/PRINCIPAL FINDINGS: Using molecular dynamics simulation, essential dynamics, correlated motions and signal propagation analysis, we have found that substitution of the sulfur atom of M213 by a sulfoxide group impacts on the stability of the native state increasing the flexibility of regions preceding the site of the modification and perturbing the network of stabilizing interactions. Together, these changes favor the population of alternative states which maybe essential in the productive pathway of the pathogenic conversion. These changes are also observed when the sulfoxidation is placed at M206 and at both, M206 and M213. CONCLUSIONS/SIGNIFICANCE: Our results suggest that the sulfoxidation of Helix-3 methionines might be the switch for triggering the initial alpha-fold destabilization required for the productive pathogenic conversion

    Simulating micrometre-scale crystal growth from solution

    No full text
    Understanding crystal growth is essential for controlling the crystallization used in industrial separation and purification processes. Because solids interact through their surfaces, crystal shape can influence both chemical and physical properties1. The thermodynamic morphology can readily be predicted2, but most particle shapes are actually controlled by the kinetics of the atomic growth processes through which assembly occurs3. Here we study the urea-solvent interface at the nanometre scale and report kinetic Monte Carlo simulations of the micrometre-scale threedimensional growth of urea crystals. These simulations accurately reproduce experimentally observed crystal growth. Unlike previous models of crystal growth4-6, no assumption is made that the morphology can be constructed from the results for independently growing surfaces or from an a priori specification of surface defect concentration. This approach offers insights into the role of the solvent, the degree of supersaturation, and the contribution that extended defects (such as screw dislocations) make to crystal growth. It also connects observations made at the nanometre scale, through in situ atomic force microscopy, with those made at the macroscopic level. If extended to include additives, the technique could lead to the computer aided design of crystals
    corecore