15 research outputs found

    A transcriptionally distinct CXCL13+CD103+CD8+ T-cell population is associated with B-cell recruitment and neoantigen load in human cancer

    Get PDF
    The chemokine CXCL13 mediates recruitment of B cells to tumors and is essential for the formation of tertiary lymphoid structures (TLSs). TLSs are thought to support antitumor immunity and are associated with improved prognosis. However, it remains unknown whether TLSs are formed in response to the general inflammatory character of the tumor microenvironment, or rather, are induced by (neo)antigen-specific adaptive immunity. We here report on the finding that the transforming growth factor beta (TGFβ)-dependent CD103+CD8+ tumor-infiltrating T-cell (TIL) subpopulation expressed and produced CXCL13. Accordingly, CD8+ T cells from peripheral blood activated in the presence of TGFβ upregulated CD103 and secreted CXCL13. Conversely, inhibition of TGFβ receptor signaling abrogated CXCL13 production. CXCL13+CD103+CD8+ TILs correlated with B-cell recruitment, TLSs, and neoantigen burden in six cohorts of human tumors. Altogether, our findings indicated that TGFβ plays a non-canonical role in coordinating immune responses against human tumors and suggest a potential role for CXCL13+CD103+CD8+ TILs in mediating B-cell recruitment and TLS formation in human tumors

    Preoperative cerebrospinal fluid cytokine levels and the risk of postoperative delirium in elderly hip fracture patients

    Get PDF
    Aging and neurodegenerative disease predispose to delirium and are both associated with increased activity of the innate immune system resulting in an imbalance between pro- and anti-inflammatory mediators in the brain. We examined whether hip fracture patients who develop postoperative delirium have altered levels of inflammatory mediators in cerebrospinal fluid (CSF) prior to surgery. Patients were 75 years and older and admitted for surgical repair of an acute hip fracture. CSF samples were collected preoperatively. In an exploratory study, we measured 42 cytokines and chemokines by multiplex analysis. We compared CSF levels between patients with and without postoperative delirium and examined the association between CSF cytokine levels and delirium severity. Delirium was diagnosed with the Confusion Assessment Method; severity of delirium was measured with the Delirium Rating Scale Revised-98. Mann-Whitney U tests or Student t-tests were used for between-group comparisons and the Spearman correlation coefficient was used for correlation analyses. Sixty-one patients were included, of whom 23 patients (37.7%) developed postsurgical delirium. Concentrations of Fms-like tyrosine kinase-3 (P=0.021), Interleukin-1 receptor antagonist (P=0.032) and Interleukin-6 (P=0.005) were significantly lower in patients who developed delirium postoperatively. Our findings fit the hypothesis that delirium after surgery results from a dysfunctional neuroinflammatory response: stressing the role of reduced levels of anti-inflammatory mediators in this process. The Effect of Taurine on Morbidity and Mortality in the Elderly Hip Fracture Patient.Registration number: NCT00497978. Local ethical protocol number: NL16222.094.0

    Systemic inflammation and microglial activation: systematic review of animal experiments

    Get PDF
    Animal studies show that peripheral inflammatory stimuli may activate microglial cells in the brain implicating an important role of microglia in sepsis-associated delirium. We systematically reviewed animal experiments related to the effects of systemic inflammation on the microglial and inflammatory response in the brain. We searched PubMed between January 1, 1950 and December 1, 2013 and Embase between January 1, 1988 and December 1, 2013 for animal studies on the influence of peripheral inflammatory stimuli on microglia and the brain. Identified studies were systematically scored on methodological quality. Two investigators extracted independently data on animal species, gender, age, and genetic background; number of animals; infectious stimulus; microglial cells; and other inflammatory parameters in the brain, including methods, time points after inoculation, and brain regions. Fifty-one studies were identified of which the majority was performed in mice (n = 30) or in rats (n = 19). Lipopolysaccharide (LPS) (dose ranging between 0.33 and 200 mg/kg) was used as a peripheral infectious stimulus in 39 studies (76 %), and live or heat-killed pathogens were used in 12 studies (24 %). Information about animal characteristics such as species, strain, sex, age, and weight were defined in 41 studies (80 %), and complete methods of the disease model were described in 35 studies (68 %). Studies were also heterogeneous with respect to methods used to assess microglial activation; markers used mostly were the ionized calcium binding adaptor molecule-1 (Iba-1), cluster of differentiation 68 (CD68), and CD11b. After LPS challenge microglial activation was seen 6 h after challenge and remained present for at least 3 days. Live Escherichia coli resulted in microglial activation after 2 days, and heat-killed bacteria after 2 weeks. Concomitant with microglial response, inflammatory parameters in the brain were reviewed in 23 of 51 studies (45 %). Microglial activation was associated with an increase in Toll-like receptor (TLR-2 and TLR-4), tumor necrosis factor alpha (TNF-α), and interleukin 1 beta (IL-1β) messenger ribonucleic acid (mRNA) expression or protein levels. Animal experiments robustly showed that peripheral inflammatory stimuli cause microglial activation. We observed distinct differences in microglial activation between systemic stimulation with (supranatural doses) LPS and live or heat-killed bacteri

    Antineutrophil cytoplasmic antibodies in infective endocarditis: a case report and systematic review of the literature

    No full text
    Abstract: Infective endocarditis (IE) may be misdiagnosed as ANCA-associated vasculitis (AAV), especially when antineutrophil cytoplasmic antibodies (ANCA) are detected. Distinguishing IE from AAV is crucial to guide therapy. However, little is known about ANCA positivity in IE patients. We present a case report and systematic review of the literature on patients with ANCA-positive IE, aiming to provide a comprehensive overview of this entity and to aid clinicians in their decisions when encountering a similar case. A systematic review of papers on original cases of ANCA-positive IE without a previous diagnosis of AAV was conducted on PubMed in accordance with PRISMA-IPD guidelines. A predefined set of clinical, laboratory, and kidney biopsy findings was extracted for each patient and presented as a narrative and quantitative synthesis. A total of 74 reports describing 181 patients with ANCA-positive IE were included (a total of 182 cases including our own case). ANCA positivity was found in 18–43% of patients with IE. Patients usually presented with subacute IE (73%) and had positive cytoplasmic ANCA-staining or anti-proteinase-3 antibodies (79%). Kidney function was impaired in 72%; kidney biopsy findings were suggestive of immune complexes in 59%, while showing pauci-immune glomerulonephritis in 37%. All were treated with antibiotics; 39% of patients also received immunosuppressants. During follow-up, 69% of patients became ANCA-negative and no diagnosis of systemic vasculitis was reported. This study reviewed the largest series of patients with ANCA-positive IE thus far and shows the overlap in clinical manifestations between IE and AAV. We therefore emphasize that clinicians should be alert to the possibility of an underlying infection when treating a patient with suspected AAV, even when reassured by ANCA positivity.• This systematic review describes - to our knowledge - the largest series of patients with ANCA-positive infective endocarditis (IE) thus far (N=182), and shows a high degree of overlap in clinical manifestations between IE and ANCA-associated vasculitis (AAV).• ANCA positivity was found in 18-43% of patients with infective endocarditis. Of patients with ANCA-positive IE, the majority (79%) showed cytoplasmic ANCA-staining or anti-PR3-antibodies. We emphasize that clinicians should be alert to the possibility of an underlying infection when treating a patient with suspected AAV, even when reassured by ANCA positivity.• In patients with IE and ANCA-associated symptoms such as acute kidney injury, an important clinical challenge is the initiation of immunosuppressive therapy. All patients with data in this series received antibiotics; 39% also received immunosuppressive therapy. In many of these patients, ANCA-associated symptoms resolved or stabilized after infection was treated. ANCA titers became negative in 69% , and a diagnosis of AAV was made in none of the cases. We therefore recommend that (empiric) antibiotic treatment remains the therapeutic cornerstone for ANCA-positive IE patients, while a watchful wait-and-see approach with respect to immunosuppression is advised

    Microglial Activation After Systemic Stimulation With Lipopolysaccharide and Escherichia coli

    No full text
    Background: Microglial activation after systemic infection has been suggested to mediate sepsis-associated delirium. A systematic review of animal studies suggested distinct differences between microglial activation after systemic challenge with live bacteria and lipopolysaccharide (LPS). Here, we describe a mouse model of microglial activation after systemic challenge with live Escherichia coli (E. coli) and compare results with systemic challenge with LPS.Methods: Sixty mice were intraperitoneally injected with E. coli (1 × 104 colony-forming units) and sacrificed at 12, 20, 48, and 72 h after inoculation. For 48 and 72 h time points, mice were treated with ceftriaxone. Thirty mice were intraperitoneally injected with LPS (5 mg/kg) and sacrificed 3 and 48 h after inoculation; 48 control mice were intraperitoneally injected with isotonic saline. Microglial response was monitored by immunohistochemical staining with Iba-1 antibody and flow cytometry; and inflammatory response by mRNA expression of pro- and anti-inflammatory mediators.Results: Mice infected with live E. coli showed microglial activation 72 h post-inoculation, with increased cell number in cortex (p = 0.0002), hippocampus (p = 0.003), and thalamus (p = 0.0001), but not in the caudate nucleus/putamen (p = 0.33), as compared to controls. At 72 h, flow cytometry of microglia from E. coli infected mice showed increased cell size (p = 0.03) and CD45 expression (p = 0.03), but no increase in CD11b expression, and no differences in brain mRNA expression of inflammatory mediators as compared to controls. In mice with systemic LPS stimulation, microglial cells were morphologically activated at the 48 h time point with increased cell numbers in cortex (p = 0.002), hippocampus (p = 0.0003), thalamus (p = 0.007), and caudate nucleus/putamen (p < 0.0001), as compared to controls. At 48 h, flow cytometry of microglia from LPS stimulated mice showed increased cell size (p = 0.03), CD45 (p = 0.03), and CD11b (p = 0.04) expression. Brain mRNA expression of TNF-α (p = 0.02), IL-1β (p = 0.02), and MCP-1 (p = 0.03) were increased as compared to controls.Interpretation: Systemic challenge with live E. coli causes a neuro-inflammatory response, but this response occurs at a later time point and is less vigorous as compared to LPS stimulation.The E. coli model mimics the clinical situation of infection associated delirium more closely than stimulation with supra-natural LPS

    Microglial response in triggering receptor expressed on myeloid cells 2 (TREM2) knock-out mice after systemic stimulation with Escherichia coli

    No full text
    Background: Systemic infection is an important risk factor for delirium, associated with neurodegeneration and subsequent cognitive impairment in older people. Microglial cell response is a known key player in this process and we hypothesize that the triggering receptor expressed on myeloid cells 2 (TREM2) plays an important role in the regulation of this response. Methods: 8- to 10-week old male wild-type (WT) and TREM2 knock-out (Trem2-/-) mice were intraperitoneally inoculated with live Escherichia coli (E. coli) or saline. After inoculation, all mice were treated with ceftriaxone (an antimicrobial drug) at 12 and 24 h and were sacrificed after 2 and 3 days. Microglial response was determined by immunohistochemical staining with an ionized calcium-binding adaptor molecule 1 (Iba-1) antibody and flow cytometry. mRNA expression of pro- and anti-inflammatory mediators was measured to quantify the inflammatory response. Results: We observed increased Iba-1 positive cells number in thalamus of Trem2-/- mice at 3d after inoculation compared to WT mice (mean 120 cell/mm2 [SD 8] vs 105 cell/mm2 [SD 11]; p = 0.03). Flow cytometry showed no differences in forward scatter or expression of CD11b, CD45 and CD14 between WT and Trem2-/- mice. The brain mRNA expression levels of tumor necrosis factor alpha (TNF-α) of Trem2-/- mice at 2d were higher compared to WT mice (p = 0.003). Higher mRNA expression of interleukin 1 beta (IL-1β), Iba-1, CD11b and mitogen-activated protein kinase 1 (MAPK-1) was found in brain of WT mice at 2d compared to Trem2-/- mice (respectively p = 0.02; p = 0.001; p = 0.03 and p = 0.02). In spleen there were no differences in inflammatory mediators, between WT and Trem2-/- mice. Interpretation: Although the loss of function of TREM2 during systemic infection led to an increased number of activated microglia in the thalamus, we did not observe a consistent increase in expression of inflammatory genes in the brain. The role of TREM2 in the neuro-inflammatory response following systemic infection therefore appears to be limited

    Microglial cell response in α7 nicotinic acetylcholine receptor-deficient mice after systemic infection with Escherichia coli

    No full text
    BACKGROUND: Development of neurodegeneration in older people has been associated with microglial cell activation triggered by systemic infection. We hypothesize that α7 nicotinic acetylcholine receptor (α7nAChR) plays an important role in regulation of this process. METHODS: 8- to 10-week-old male wild-type (WT) and α7nAChR knock-out (α7nAChR-/-) mice were intraperitoneally inoculated with live Escherichia (E.) coli or saline. After inoculation, all mice were treated with ceftriaxone (an antimicrobial drug) at 12 and 24 h and killed at 2 or 3 days. The microglial response was characterized by immunohistochemical staining with an ionized calcium-binding adaptor molecule 1 (Iba-1) antibody and flow cytometry. To quantify inflammatory response, mRNA expression of pro- and anti-inflammatory mediators was measured in brain and spleen. RESULTS: We observed no differences in Iba-1 positive cell number or morphology and flow cytometry (CD11b, CD45 and CD14) of microglial cells between WT and α7nAChR-/- mice after systemic infection. Infected α7nAChR-/- mice showed significantly higher mRNA expression in brain for tumor necrosis factor alpha (TNF-α) at day 2 and 3, interleukin 6 (IL-6) at day 2 and monocyte chemotactic protein 1 (MCP-1) and suppressor of cytokine signaling 1 (SOCS1) at day 3, there was significantly lower mRNA expression in brain for mitogen-activated protein kinase 1 (MAPK1) at day 2 and 3, high-mobility group 1 (HMGB-1) and CD11b at day 2, and deubiquitinase protein A20 (A20) at day 3 compared to infected WT mice. INTERPRETATION: Loss of function of α7nAChR during systemic infection led to an increased expression of TNF-α and IL-6 in brain after systemic infection with E. coli, but not to distinct differences in microglial cell number or morphological activation of microglia

    Prognostic significance of L1CAM expression and its association with mutant p53 expression in high-risk endometrial cancer

    No full text
    Studies in early-stage, predominantly low- and intermediate-risk endometrial cancer have demonstrated that L1 cell adhesion molecule (L1CAM) overexpression identifies patients at increased risk of recurrence, yet its prognostic significance in high-risk endometrial cancer is unclear. To evaluate this, its frequency, and the relationship of L1CAM with the established endometrial cancer biomarker p53, we analyzed the expression of both markers by immunohistochemistry in a pilot series of 116 endometrial cancers (86 endometrioid, 30 non-endometrioid subtype) with high-risk features (such as high tumor grade and deep myometrial invasion) and correlated results with clinical outcome. We used The Cancer Genome Atlas (TCGA) endometrial cancer series to validate our findings. Using the previously reported cutoff of 10% positive staining, 51/116 (44%) tumors were classified as L1CAM-positive, with no significant association between L1 CAM positivity and the rate of distant metastasis (P=0.195). However, increasing the threshold for L1CAM positivity to 50% resulted in a reduction of the frequency of L1CAM-positive tumors to 24% (28/116), and a significant association with the rate of distant metastasis (P=0.018). L1CAM expression was strongly associated with mutant p53 in the high-risk and TCGA series (P10% does not predict prognosis in high-risk endometrial cancer, whereas an alternative threshold (>50%) does. L1CAM expression is strongly, but not universally, associated with mutant p53, and may be strong enough for clinical implementation as prognostic marker in combination with p53. The high frequency of L1CAM expression in high-risk endometrial cancers suggests that it may also be a promising therapeutic target in this tumor subset

    POLE Proofreading Mutations Elicit an Antitumor Immune Response in Endometrial Cancer

    No full text
    Purpose: Recent studies have shown that 7% to 12% of endometrial cancers are ultramutated due to somatic mutation in the proofreading exonuclease domain of the DNA replicase POLE. Interestingly, these tumors have an excellent prognosis. In view of the emerging data linking mutation burden, immune response, and clinical outcome in cancer, we investigated whether POLE-mutant endometrial cancers showed evidence of increased immunogenicity. Experimental Design: We examined immune infiltration and activation according to tumor POLE proofreading mutation in a molecularly defined endometrial cancer cohort including 47 POLE-mutant tumors. We sought to confirm our results by analysis of RNAseq data from the TCGA endometrial cancer series and used the same series to examine whether differences in immune infiltration could be explained by an enrichment of immunogenic neoepitopes in POLE-mutant endometrial cancers. Results: Compared with other endometrial cancers, POLE mutants displayed an enhanced cytotoxic T-cell response, evidenced by increased numbers of CD8(+) tumor-infiltrating lymphocytes and CD8A expression, enrichment for a tumor-infiltrating T-cell gene signature, and strong upregulation of the T-cell cytotoxic differentiation and effector markers T-bet, Eomes, IFNG, PRF, and granzyme B. This was accompanied by upregulation of T-cell exhaustion markers, consistent with chronic antigen exposure. In silico analysis confirmed that POLE-mutant cancers are predicted to display more antigenic neoepitopes than other endometrial cancers, providing a potential explanation for our findings. Conclusions: Ultramutated POLE proofreading-mutant endometrial cancers are characterized by a robust intratumoral T-cell response, which correlates with, and may be caused by an enrichment of antigenic neopeptides. Our study provides a plausible mechanism for the excellent prognosis of these cancers. (C) 2015 AACR
    corecore