24 research outputs found

    Advancing Molecular Sieving via Å-Scale Pore Tuning in Bottom-Up Graphene Synthesis

    Get PDF
    Porous graphene films are attractive as a gas separation membrane given that the selective layer can be just one atom thick, allowing high-flux separation. A favorable aspect of porous graphene is that the pore size, essentially gaps created by lattice defects, can be tuned. While this has been demonstrated for postsynthetic, top-down pore etching in graphene, it does not exist in the more scalable, bottom-up synthesis of porous graphene. Inspired by the mechanism of precipitation-based synthesis of porous graphene over catalytic nickel foil, we herein conceive an extremely simple way to tune the pore size. This is implemented by increasing the cooling rate by over 100-fold from −1 °C min-1 to over −5 °C s-1. Rapid cooling restricts carbon diffusion, resulting in a higher availability of dissolved carbon for precipitation, as evidenced by quantitative carbon-diffusion simulation, measurement of carbon concentration as a function of nickel depth, and imaging of the graphene nanostructure. The resulting enhanced grain (inter)growth reduces the effective pore size which leads to an increase of the H2/CH4 separation factor from 6.2 up to 53.3.</p

    Synthesis–Structure–Activity Relations in Fe-CHA for C–H Activation: Control of Al Distribution by Interzeolite Conversion

    Get PDF
    The search for structurally relevant Al-arrangements in zeolites is an important endeavor for single site catalysis. Little is known about the mechanisms and zeolite dynamics during synthesis that are responsible for creating those Al-ensembles. Here, new synthetic strategies for creating Al-hosts in small-pore zeolites suitable for divalent cation catalysis are uncovered, leading to a mechanistic proposal for Al-organization during crystallization. As such, unique synthesis-structure-activity relations are demonstrated for the partial oxidation of methane on Fe-exchanged CHA-zeolites. With modified interzeolite conversions, the divalent cation capacity of the resulting high Si SSZ-13 zeolites (Si/Al ~ 35) can be reproducibly controlled in a range between 0.04 and 0.34 CoÂČâș/Al. This capacity is a proxy for the distribution of framework aluminum in pairs and correlates with the methanol production per Al when these zeolites host the α-Fe^(II) redox active site. The uncovered IZC synthesis-structure relations paint an Al-distribution hypothesis, where incongruent dissolution of the starting USY zeolite and fast synthesis kinetics with atypical growth modes allow assembling specific Al-arrangements, resulting in a high divalent cation capacity. Prolonged synthesis times and high temperatures overcome the energetic barriers for T-atom reshuffling favoring Al-isolation. These mechanisms and the relations uncovered in this work will guide the search for relevant Al-ensembles in a range of zeolite catalysts where controlling the environment for a single active site is crucial

    Crosslinked anion exchange membranes prepared from poly(phenylene oxide) (PPO) for non-aqueous redox flow batteries

    No full text
    A stable and eco-friendly anion-exchange membrane (AEM) was prepared and applied in a non-aqueous all-copper redox flow battery (RFB). The AEM was prepared via a simple procedure, leading to a cross-linked structure containing quaternary ammonium groups without involvement of harmful trimethylamine. A network was thus constructed which ensured both ion transport and solvent resistance. The ion exchange capacity (IEC) of the membrane was tuned from 0.49 to 1.03 meq g−1 by varying the content of the 4, 4â€Č-bipyridine crosslinking agent. The membrane showed a good anion conductivity and retention of copper ions. As a proof of principle, a RFB single cell with this crosslinked membrane yielded a coulombic efficiency of 89%, a voltage efficiency of 61% and an energy efficiency of 54% at 7.5 mA cm−2.status: publishe

    Stability of Filled PDMS Pervaporation Membranes in Bio-Ethanol Recovery from a Real Fermentation Broth

    No full text
    Mixed matrix membranes (MMMs) have shown great potential in pervaporation (PV). As for many novel membrane materials however, lab-scale testing often involves synthetic feed solutions composed of mixed pure components, overlooking the possibly complex interactions and effects caused by the numerous other components in a real PV feed. This work studies the performance of MMMs with two different types of fillers, a core-shell material consisting of ZIF-8 coated on mesoporous silica and a hollow sphere of silicalite-1, in the PV of a real fermented wheat/hay straw hydrolysate broth for the production of bio-ethanol. All membranes, including a reference unfilled PDMS, show a declining permeability over time. Interestingly, the unfilled PDMS membrane maintains a stable separation factor, whereas the filled PDMS membranes rapidly lose selectivity to levels below that of the reference PDMS membrane. A membrane autopsy using XRD and SEM-EDX revealed an almost complete degradation of the crystalline ZIF-8 in the MMMs. Reference experiments with ZIF-8 nanoparticles in the fermentation broth demonstrated the influence of the broth on the ZIF-8 particles. However, the observed effects from the membrane autopsy could not exactly be replicated, likely due to distinct differences in conditions between the in-situ pervaporation process and the ex-situ reference experiments. These findings raise significant questions regarding the potential applicability of MOF-filled MMMs in real-feed pervaporation processes and, potentially, in harsh condition membrane separations in general. This study clearly confirms the importance of testing membranes in realistic conditions

    Improved MOF nanoparticle recovery and purification using crosslinked PVDF membranes

    No full text
    Crosslinked PVDF-membranes are demonstrated to offer a viable alternative for centrifugation in the preparation of MOF-particles, thus realising new opportunities at lab-scale and continuous production at large-scale. The membranes combine extreme-pH with solvent stability, thus enabling application in any MOF synthesis, demonstrated here for ZIF-8, ZIF-67, HKUST-1, UiO-66 and MIL-53(Al).status: Published onlin

    Polyvinylnorbornene Gas Separation Membranes

    No full text
    Polynorbornenes are already used in a wide range of applications. They are also considered materials for polymer gas separation membranes because of their favorable thermal and chemical resistance, rigid backbone and varied chemistry. In this study, the use of 5-vinyl-2-norbornene (VNB), a new monomer in the field of gas separations, is investigated by synthesizing two series of polymers via a vinyl-addition polymerization. The first series investigates the influence of the VNB content on gas separation in a series of homo and copolymers with norbornene. The second series explores the influence of the crosslinking of polyvinylnorbornene (pVNB) on gas separation. The results indicate that while crosslinking had little effect, the gas separation performance could be fine-tuned by controlling the VNB content. As such, this work demonstrates an interesting way to significantly extend the fine-tuning possibilities of polynorbornenes for gas separations
    corecore